scholarly journals Theoretical Investigation of the Quasi-ring C–H…π Interactions

2021 ◽  
Vol 18 (2) ◽  
pp. 119-128
Author(s):  
Sin Ang Lee ◽  
◽  
Zaidi Ab Ghani ◽  
Mohd Hafiz Yaakob ◽  
Mohamed Ismail Mohamed-Ibrahim ◽  
...  

The quasi-ring C–H…π interactions have been reported to be responsible for the stability of crystalline materials. The statistical analysis, together with electronic structure calculations in the framework of density functional theory and Moller-Plesset have also provided positive data on the aforementioned interactions. However, improvements can be had in the theoretical calculations, where the basis set convergence is not explored. This is crucial as the interactions are of weak type, reported to be around 4 – 5 kcal mol–1. In this investigation, the idea is to combine the geometry, potential energy surface, and bonding analysis to provide different insights into the interactions. Our results show that the original configurations of the crystals, even with the substitutions of linear chains, are more favorable than the rotated ones. Further calculations are needed to verify the involvements of the π orbitals of the N, C, Cl, S and the d-orbital of Cu, and the s-orbital of hydrogen atoms.

2019 ◽  
Vol 7 (1) ◽  
pp. 27
Author(s):  
Hassan H. Abdallah

Cyanopolyynes have been found in the interstellar medium, cold dust cloud Taurus Molecular Cloud-1, and the Titan’s atmosphere. Theoretical calculations are carried out to predict gas and aqueous phase acidities of a series of cyanopolyynes acids. Two levels of theory were used in this study, with the combination of density functional theory, and Møller–Plesset perturbation (MP2) theory, MP2 methods with two types of basis set, namely, Pople’s 6–311++g (d, p) basis set and Dunning’s aug-cc-pVTZ basis set. The calculations of these molecules reveal that pKa values varying from 12.25 to 17.25 and indicate that the acidity of these molecules in aqueous phase increases whereas the acidity in gas phase decreases with an increasing chain length of these acids.


Proceedings ◽  
2019 ◽  
Vol 41 (1) ◽  
pp. 28
Author(s):  
Dawid Zych

In this work, the necessity of synthesis of 1,3-di(hetero)aryl-7-substituted pyrenes is presented based on the results of theoretical calculations by using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) by using Gaussian 09 program with B3LYP exchange-correlation functional and 6-31G** basis set. What is more, the synthetic routes with feasible reagents and conditions are presented. The subject of theoretical considerations are two pyrene derivatives which contain at position 1 and 3 pyrazolyl substituents and at position 7 amine (1) or boron (2) derivative. The theoretical calculations were also performed for the osmium complexes with mentioned ligands (3 and 4). The influence of electron-donating/accepting character of the substituent at position 7 of pyrene on the properties of molecules has been established.


2009 ◽  
Vol 87 (7) ◽  
pp. 974-983 ◽  
Author(s):  
Sarah R. Whittleton ◽  
Russell J. Boyd ◽  
T. Bruce Grindley

Density functional theory and second-order Møller–Plesset perturbation theory with effective core potentials have been used to calculate homolytic bond-dissociation enthalpies, D(Sn–X), of organotin compounds, and their performance has been assessed by comparison with available experimental bond enthalpies. The SDB-aug-cc-pVTZ basis set with its effective core potential was used to calculate the D(Sn–X) of a series of trimethyltin(IV) species, Me3Sn–X, where X = H, CH3, CH2CH3, NH2, OH, Cl, and F. This is the most comprehensive report to date of homolytic Sn–X bond-dissociation enthalpies (BDEs). Effective core potentials are then used to calculate thermodynamic parameters including donor–acceptor bond enthalpies, [Formula: see text], for a series of tin-ligand complexes, L2SnX4 (X = Br or Cl, L = py, dmf, or dmtf), which are compared with previous experimental and nonrelativistic computational results. Based on computational efficiency and accuracy, it is concluded that effective core potentials are appropriate computational methods to examine bonding in organotin systems.


2010 ◽  
Vol 8 (1) ◽  
pp. 134-141 ◽  
Author(s):  
Boleslaw Karwowski

AbstractOxidatively generated damage to DNA frequently appears in the human genome as an effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents. Due to these facts it has been decided to calculate the stability of 5′,8-cyclo-2′-deoxyadenosine/guanosine (cdA, cdG) in their 5′R and 5′S diastereomeric forms. For all points of quantum mechanics studies presented, the density functional theory (DFT) with B3LYP parameters on 6-311++G** basis set level was used. The calculations showed a significant negative enthalpy for glycosidic bond cleavage reaction for cationic forms and slightly negative for neutral ones. The preliminary study of the discussed process has shown the nature of stepwise nucleophilic substitution DN*AD type mechanism. Surprisingly, the different values in free energy, between short-lived oxacarbenium ion intermediates, have been found to lie over a relatively small range, around 1 and 2.8 kcal mol−1. For anions, the decomposition enthalpies were found as positive in aqueous phases. These theoretical results are supported by the formic acid hydrolysis experiments of both diastereomers of cdA, for the first time. (5′S)cdA exhibited higher stability than (5′R)cdA.


2013 ◽  
Vol 17 (04) ◽  
pp. 289-308 ◽  
Author(s):  
Mateusz Fościak ◽  
Edyta Proniewicz ◽  
Krzysztof Zborowski ◽  
Younkyoo Kim ◽  
Leonard M. Proniewicz

This work presents a complete vibrational analysis of iron [ Fe (II) and Fe (III)] and nickel [ Ni (II)] complexes with 5,10,15,20-tetraphenyl-21-oxaporphyrin [OTPPH] and 5,20-bis(p-tolyl)-10,15-diphenyl-21-oxaporphyrin [ODTDPPH]. In these porphyrins, a furan ring replaces one of the pyrrole rings. The six-coordinate (OTPP) FeIIICl2 and (ODTDPP) FeIIICl2 as well as the five-coordinate (OTPP) FeIICl and (OTPP) NiIICl complexes were investigated using experimental and theoretical methods. The experimental part of this work involved Fourier-transform absorption infrared (FT-IR), resonance Raman (RR), and electron absorption (UV-vis) measurements for all of the investigated complexes. In the theoretical section, optimized geometries and vibrational frequencies for model compounds are provided. The theoretical calculations were performed at the B3LYP level with the LANL2DZ basis set. Good agreement was achieved between the experimental and theoretical vibrational spectra. In addition, charge distributions (GAPT) and geometrical aromaticity indices (Bird's I5 and HOMA) were calculated and discussed.


2017 ◽  
Vol 70 (7) ◽  
pp. 837
Author(s):  
Xiumei Song ◽  
Fuling Xue ◽  
Zongcai Feng ◽  
Yun Wang ◽  
Zhaoyang Wang ◽  
...  

The simultaneous α-iodination and Nβ-arylation mechanism of 5-alkyloxy-4-phenylamino-2(5H)-furanone by (diacetoxyiodo)benzene was investigated by means of density functional theory (DFT) with B3LYP/6-31G*//LANL2DZ, selecting 4-(diphenylamino)-5-methyloxy-3-iodo-2(5H)-furanone as the calculation model. In addition, the effect of solvent on the reaction pathway was investigated using the Polarisable Continuum Model (PCM). Good agreement was found between the computational and the experimental results. Furthermore, single crystals of 4-(diphenylamino)-5-ethoxy-3-iodo-2(5H)-furanone were grown by slow evaporation technique. The molecular structure analysis was performed by single crystal X-ray analysis and theoretical calculations using a semi-empirical quantum chemical method and DFT/B3LYP methods with a LANL2DZ as basis set.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5487
Author(s):  
Rodrigo A. Lemos Silva ◽  
Demetrio A. da Silva Filho ◽  
Megan E. Moberg ◽  
Ted M. Pappenfus ◽  
Daron E. Janzen

X-ray structural determinations and computational studies were used to investigate halogen interactions in two halogenated oxindoles. Comparative analyses of the interaction energy and the interaction properties were carried out for Br···Br, C-H···Br, C-H···O and N-H···O interactions. Employing Møller–Plesset second-order perturbation theory (MP2) and density functional theory (DFT), the basis set superposition error (BSSE) corrected interaction energy (Eint(BSSE)) was determined using a supramolecular approach. The Eint(BSSE) results were compared with interaction energies obtained by Quantum Theory of Atoms in Molecules (QTAIM)-based methods. Reduced Density Gradient (RDG), QTAIM and Natural bond orbital (NBO) calculations provided insight into possible pathways for the intermolecular interactions examined. Comparative analysis employing the electron density at the bond critical points (BCP) and molecular electrostatic potential (MEP) showed that the interaction energies and the relative orientations of the monomers in the dimers may in part be understood in light of charge redistribution in these two compounds.


2013 ◽  
Vol 10 (3) ◽  
pp. 1041-1049
Author(s):  
Baghdad Science Journal

Density Functional Theory (DFT) with B3LYP hybrid exchange-correlation functional and 3-21G basis set and semi-empirical methods (PM3) were used to calculate the energies (total energy, binding energy (Eb), molecular orbital energy (EHOMO-ELUMO), heat of formation (?Hf)) and vibrational spectra for some Tellurium (IV) compounds containing cycloctadienyl group which can use as ligands with some transition metals or essential metals of periodic table at optimized geometrical structures.


2009 ◽  
Vol 64 (3-4) ◽  
pp. 251-256 ◽  
Author(s):  
Masoud Giahi ◽  
Mahmoud Mirzaei

Abstract A density functional theory (DFT) study is performed to investigate the influence of structural defects on the electronic structure properties of perfect boron nitride nanotubes (BNNTs). To this aim, as representative models, the single-walled (6,0) BNNT consisting of 36 boron, 36 nitrogen, and 12 hydrogen atoms and the single-walled (4,4) BNNT consisting of 36 boron, 36 nitrogen, and 16 hydrogen atoms are considered. The nuclear quadrupole resonance (NQR) parameters are calculated and compared in two perfect and defective models of the considered BNNTs. The results indicate that due to formation of non-hexagonal rings in the defective model because of removing a B-N bond, the NQR parameters at the sites of first neighbouring nuclei are significantly influenced by imposed perturbation, however, the sites of other nuclei, farther from perturbation, remain almost unchanged. The calculations are performed at the level of the BLYP method and 6-31G* standard basis set using the GAUSSIAN 98 package


2019 ◽  
Vol 19 (2) ◽  
pp. 91-104 ◽  
Author(s):  
Masoome Sheikhi ◽  
Siyamak Shahab ◽  
Radwan Alnajjar ◽  
Mahin Ahmadianarog ◽  
Sadegh Kaviani

Objective: In the present study, the interaction between drug Tyrphostin AG528 and CNT(6,6-6) nanotube by Density Functional Theory (DFT) calculations in solvent water has been investigated for the first time. Methods and Results: According to the calculations, intermolecular hydrogen bonds take place between an active position of the molecule Tyrphostin AG528 and hydrogen atoms of the nanotube which play an important role in the stability of complex CNT(6,6- 6)/Tyrphostin AG528. The non-bonded interaction effects of the molecule Tyrphostin AG528 with CNT(6,6-6) nanotube on the electronic properties, chemical shift tensors and natural charge have also been detected. The natural bond orbital (NBO) analysis suggested that the molecule Tyrphostin AG528 as an electron donor and the CNT(6,6-6) nanotube play the role of an electron acceptor at the complex CNT(6,6-6)/Tyrphostin AG528. Conclusion: The electronic spectra of the Tyrphostin AG528 drug and complex CNT(6,6-6)/Tyrphostin AG528 in solvent water were calculated by Time-Dependent Density Functional Theory (TD-DFT) for the investigation of adsorption effect of the Tyrphostin AG528 drug over nanotube on maximum wavelength. Then, the possibility of the use of CNT(6,6-6) nanotube for Tyrphostin AG528 delivery to the diseased cells has been established.


Sign in / Sign up

Export Citation Format

Share Document