scholarly journals LQR Control for Five-Link Pendubot

2021 ◽  
Vol 26 (1) ◽  
pp. 5-8
Author(s):  
Xuan-Dung Huynh ◽  
Van-Dong-Hai Nguyen ◽  
Van-Khanh Doan ◽  
Phong-Luu Nguyen ◽  
Thi-Ty-Ty Vo ◽  
...  

Pendubot is a popular inverted pendulum model in control engineering. Usually, two-link pendubot is used due to its simplicity in mechanical structure and its nonlinear characteristic. The challenge of control can be increased by adding more links to system. In this paper, balancing five-link pendubot at TOP position and pulse-tracking this model are tested through simulation. The control algorithm LQR is in survey in this research. The simulation shows that system is stabilized well at working point and it is also control well in tracking a pulse trajectory.

2016 ◽  
Vol 8 (9) ◽  
pp. 168781401667028
Author(s):  
Pengfei Wang ◽  
Guocai Liu ◽  
Fusheng Zha ◽  
Wei Guo ◽  
Mantian Li ◽  
...  

1999 ◽  
Vol 354 (1385) ◽  
pp. 869-875 ◽  
Author(s):  
E. Otten

The balance of standing humans is usually explained by the inverted pendulum model. The subject invokes a horizontal ground–reaction force in this model and controls it by changing the location of the centre of pressure under the foot or feet. In experiments I showed that humans are able to stand on a ridge of only a few millimetres wide on one foot for a few minutes. In the present paper I investigate whether the inverted pendulum model is able to explain this achievement. I found that the centre of mass of the subjects sways beyond the surface of support, rendering the inverted pendulum model inadequate. Using inverse simulations of the dynamics of the human body, I found that hip–joint moments of the stance leg are used to vary the horizontal component of the ground–reaction force. This force brings the centre of mass back over the surface of support. The subjects generate moments of force at the hip–joint of the swing leg, at the shoulder–joints and at the neck. These moments work in conjunction with a hip strategy of the stance leg to limit the angular acceleration of the head–arm–trunk complex. The synchrony of the variation in moments suggests that subjects use a motor programme rather than long latency reflexes.


2018 ◽  
Vol 8 (8) ◽  
pp. 1257 ◽  
Author(s):  
Tianqi Yang ◽  
Weimin Zhang ◽  
Xuechao Chen ◽  
Zhangguo Yu ◽  
Libo Meng ◽  
...  

The most important feature of this paper is to transform the complex motion of robot turning into a simple translational motion, thus simplifying the dynamic model. Compared with the method that generates a center of mass (COM) trajectory directly by the inverted pendulum model, this method is more precise. The non-inertial reference is introduced in the turning walk. This method can translate the turning walk into a straight-line walk when the inertial forces act on the robot. The dynamics of the robot model, called linear inverted pendulum (LIP), are changed and improved dynamics are derived to make them apply to the turning walk model. Then, we expend the new LIP model and control the zero moment point (ZMP) to guarantee the stability of the unstable parts of this model in order to generate a stable COM trajectory. We present simulation results for the improved LIP dynamics and verify the stability of the robot turning.


Author(s):  
Haoyu Ren ◽  
Qimin Li ◽  
Bing Liu ◽  
Zhenhuan Dou

High acceleration and extreme load are frequently appeared on high-speed locomotion of legged robot’s legs, imposing a challenging trade-off between weight and torque in leg design. This paper proposes a new design paradigm based on cable-drive and elastic linkage to solve the problem. The details of the design procedure are given, including the construction of the single leg. With the optimum design of the linkage mechanism, a combined index of the workspace and tracking error are used as object function, and taking geometrical design parameters of the linkage as optimization parameters. Based on the target workspace and the spring-loaded inverted pendulum model, the best foot trajectory in obstacle climbing and trotting gait are analyzed and illustrated. This paper built linkage cable-drive spring robot based on the legged module integration. Simulations and experiments indicate that linkage cable-drive spring robot performs stable trotting with control of the spring-loaded inverted pendulum model. Linkage cable-drive spring robot prototype experiments results are provided to verify the validity of the new method.


In the coming decades, humanoid robots will play a rising role in society. The present article discusses their walking control and obstacle avoidance on uneven terrain using enhanced spring-loaded inverted pendulum model (ESLIP). The SLIP model is enhanced by tuning it with an adaptive particle swarm optimization (APSO) approach. It helps the humanoid robot to reach closer to the obstacles in order to optimize the turning angle to optimize the path length. The desired trajectory, along with the sensory data, is provided to the SLIP model, which creates compatible COM (center of mass) dynamics for stable walking. This output is fed to APSO as input, which adjusts the placement of the foot during interaction with uneven surfaces and obstacles. It provides an optimum turning angle for shunning the obstacles and ensures the shortest path length. Simulation has been carried out in a 3D simulator based on the proposed controller and SLIP controller in uneven terrain.


Sign in / Sign up

Export Citation Format

Share Document