scholarly journals Compressive strength measurements of hybrid dental composites treated with dry heat and light emitting diodes (LED) post cure treatment

2014 ◽  
Vol 26 (3) ◽  
Author(s):  
Jenny Krisnawaty ◽  
Setiawan Natasasmita ◽  
Dudi Aripin

Hybrid composites are mostly used on large cavities as restorative dental materials, whether it is used directly or indirectly. The mechanical properties of composite resin shall increase if it is treated with post cure treatment. The aim of this study is to evaluate compressive strength differences between dry heat and Light Emitting Diodes (LED) treatment on the hybrid dental composite. A quasi-experimental was applied on this research with a total of 30 samples that were divided into two groups. Each sample was tested using LLOYD Universal Testing Machine with 1 mm/min speed to evaluate the compressive strength. The compressive strength results were marked when the sample was broken. The results of two groups were then analyzed using t-test statistical calculation. The results of this study show that post cure treatment on hybrid composite using LED light box (194.138 MPa) was lower than dry heat treatment (227.339 MPa), which was also significantly different from statistical analysis. It can be concluded that compressive strength of LED light box was lower than dry heat post-cure treatment on the hybrid composite resin.

2011 ◽  
Vol 23 (3) ◽  
Author(s):  
Jenny Krisnawaty ◽  
Setiawan Natasasmita ◽  
Dudi Aripin

A hybrid type of composite resins is used as dental restorative materials in a wide cavity directly or indirectly. The mechanical properties of the composite resin would increase post-curing. The purpose of this study was to determine the differences between the compressive strength of hybrid type composite resin post-curing using LED light box and dry heating. This type of research was a quasi-experimental in vitro with the sample size of 30 samples which were divided into two groups. Each sample was tested using a Universal Testing Machine (Lloyd) at a speed of 1 mm/minute to test the compressive strength. Compressive strength values were recorded when the sample broke. The average value of compressive strength of the two treatment groups was statistically calculated using t-test. The results, of this study, showed that a hybrid composite resin with post curing using a light box with LED was at 194.138 Mpa which was lower than using the dry heat of 227.339 Mpa. It showed the statistically significant difference. The conclusion of this study was that the compressive strength of post-cured hybrid composites using a light box with LED was significantly lower than the post-curing using dry heat.


2017 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Atia Nurul Sidiqa ◽  
Badi Soerachman

The incremental layering technique with a 2mm maximum depth is a standard procedure to produce a perfect resin composite with a high mechanical strength. Recent studies has developed bulkfill composite resin that can be done to a depth of more than 4mm. Composite resin polymerization process through irradiation can be obtained by the use of Quartz-Tungsten-Halogen (QTH) and Light Emitting Diodes (LED). One of the mechanical properties needed for the restorative material is good compressive strength to withstand a load of chewing time during the process of mastication function. The purpose of this study to determine the effect of irradiation QTH and LED on the compressive strength of composite resin bulkfill with thickness variations of 4 and 6mm. Teflon mold were used to prepare the resin bulkfill spesimen (6mm in diameter x 4mm in length) bulkfill disk 6mm diameter with a thickness of 4mm (n=5) and 6mm (n=5). Samples were soaked in distilled water with a temperature of 37ºC for 24 hours and then do the pressure test measurements by using Universal Testing Machine (UTM) with 250kgf load and speed of 0.5 mm/min. Shapiro-Wilk normality test and unpaired t-test used in this study.The results of the study there is no influence thickness was statistically significant (a=0.05) in the composite resin bulkfill thickness of 4mm and 6mm in LED and QTH irradiation group with a value of compressive strength 4mm group (147.82 ± 24,35MPa) and sample 6mm (133.76±30.63 MPa), QTH light source sample 4mm (158,21 ± 18,61Mpa), 6mm (154,23±21,43Mpa). LED and QTH no significant difference (p>0.05) in a thickness of 4mm and 6mm. Conclusion, bulkfill composite resin can be applied to the LED and QTH to a depth of 6mm without effecting the bulkfill compressive strength.


2017 ◽  
Vol 68 (8) ◽  
pp. 1874-1878
Author(s):  
Sorin Andrian ◽  
Galina Pancu ◽  
Claudiu Topoliceanu ◽  
Nicoleta Tofan ◽  
Simona Stoleriu ◽  
...  

The aim of the study was to evaluate and to compare the compressive parameters of repaired composite restoration when using different types of composite resins and a universal bonding agent as an intermediate layer. Aged micro-filled hybrid and nano-filled hybrid composite resins were chosen to simulate old restoration. The same micro-filled hybrid composite resin was used as a repair material. A universal bonding agent applied in etch-and-rinse and self etch strategies was used as an intermediate layer in restoration repair. Non-aged composite resins were considered as control. Compressive strength and compressive modulus were determined by evaluating the samples in a universal testing machine. Lower values of the tested parameters were recorded after aging both types of composite resin when compared to control. Higher values of compressive strength were recorded when nano-filled hybrid composite resin was repaired when compared to micro-filled hybrid composite resin. The strategy of universal bonding agent application as an intermediate layer did not influenced the compressive properties of repaired restoration.


2012 ◽  
Vol 13 (6) ◽  
pp. 834-837 ◽  
Author(s):  
R Divyashree ◽  
M Gururaj ◽  
CN Vijaya Kumar ◽  
Joseph Paul ◽  
L Krishnaprasada

ABSTRACT Purpose To evaluate the curing depth and compressive strength of dental composite using halogen light curing unit and light emitting diode light curing unit. Materials and methods Eighty cylindrical composite specimens were prepared using posterior composite P60(3M). Forty specimens, out of which 20 samples (group A) cured with halogen light and 20 samples (group B) cured using light emitting diode (LED) light were checked for curing depth according to ISO 4049. Remaining 40 samples out of which 20 samples (group I) cured using halogen light and 20 samples (group II) cured using LED light were checked for compressive strength using Instron universal testing machine. Results Twenty samples (group A) cured with halogen light showed better curing depth than 20 samples (group B) cured with LED light. Twenty samples (group I) cured with halogen light showed almost similar results as 20 samples (group II) cured with LED light for compressive strength. Conclusion Halogen light commonly used to cure composite resin have greater depth of cure, when compared to LED light, while both the lights produced compressive strength which is almost similar. Clinical significance Lower depth of cure with the LED unit, compared to the QTH unit, is associated with different light scattering due to differences in spectral emission. LED technology differs from QTH by the spectral emission that favorably matches the absorption spectrum of camphorquinone. How to cite this article Kumar CNV, Gururaj M, Paul J, Krishnaprasada L, Divyashree R. A Comparative Evaluation of Curing Depth and Compressive Strength of Dental Composite cured with Halogen Light Curing Unit and Blue Light Emitting Diode: An in vitro Study. J Contemp Dent Pract 2012;13(6):834-837.


2010 ◽  
Vol 22 (2) ◽  
Author(s):  
Tirza Rizany ◽  
Mochammad Richata Fadil ◽  
Endang Sukartini

Introduction: Nanofilled composite resins and resin hybrid composites are often used for the manufacture of composite indirect restorations because it has the addition of filler to add strength materials. This study aimed to compare the compressive strength of composites and composite hybrid nanofilled after post curing using light box. Methods: The research conducted was experimental research, with samples divided into two groups of each 10 specimens of hybrid composite resin and nanofilled. Composite cylindrical diameter of 3mm and 6mm high in post-curing for 180 seconds using a light box compressive strength test was then performed using a Lloyd Instruments LRX Plus, 1 mm/mnt speed. Results: The results were the average compressive strength of post-curing hybrid composites 234.61 MPa higher than the average post-curing composite nanofilled that was 196.60 MPa. Conclusion: the compressive strength of hybrid composite after post curing with light box is greater than the nanofilled composite.


2017 ◽  
Vol 40 (6) ◽  
pp. 70-76
Author(s):  
Tomislav Vinković ◽  
Monika Tkalec ◽  
Nada Parađiković ◽  
MIro Stošić ◽  
Krunoslav Zmaić ◽  
...  

Cilj rada je bio utvrditi utjecaj LED (Light Emitting Diodes) i FLUO (fluorescentno svjetlo) osvjetljenja na klijavost i energiju klijanja sjemena te masu i visinu klijanaca matovilca i kres salate. Sjetva naturalnog sjemena provedena je u Petrijeve zdjelice u komori opremljenoj LED i FLUO lampama. LED lampe su bile opremljene crvenim (650-670 nm) i plavim (440-460 nm) LED diodama u omjeru 3:1. Istraživanje je provedeno u Laboratoriju za povrćarstvo, cvjećarstvo, ljekovito i začinsko bilje Poljoprivrednog fakulteta u Osijeku. Utvrđen je statistički opravdan utjecaj tipa osvjetljenja na energiju klijanja i klijavost sjemena matovilca, a veće vrijednosti utvrđene su uslijed primjene LED lampi. Suprotno, pod FLUO lampama je utvrđena značajno veća masa i visina klijanaca matovilca te visina klijanaca kres salate. Međutim, tip osvjetljenja nije značajno utjecao na klijavost i energiju klijanja te masu klijanaca kres salate. Prema tome, može se zaključiti da je odgovor na tip osvjetljenja uvjetovan biljnom vrstom već od samih početaka rasta i razvoja.


2004 ◽  
Vol 15 (3) ◽  
pp. 199-203 ◽  
Author(s):  
Andresa Carla Obici ◽  
Mário Alexandre Coelho Sinhoreti ◽  
Lourenço Correr Sobrinho ◽  
Mario Fernando de Goes ◽  
Simonides Consani

The aim of this study was to evaluate the depth of cure and Knoop hardness in the P60 composite resin photo-activated using different methods. A bipartite brass matrix (3 mm in diameter X 11 mm in height) was filled with the composite and photo-activation was performed using continuous light, exponential light, intermittent light, plasma arc curing (PAC) or light-emitting diodes (LED). After opening the matrix, the uncured material was removed with a steel spatula and the polymerized composite was measured using a pachymeter. The specimens were then included in self-curing acrylic resin and worn longitudinally and the hardness was measured on the surface and at depths of 1, 2, 3, 4 and 5 mm. The data were analyzed by ANOVA and Tukey's test (5%). The results showed that the depth of cure was higher with the intermittent light, followed by continuous light, exponential light, PAC and LED methods. Up to a depth of 2 mm, all methods revealed similar hardness values, but there were differences between them at other depths, at which LED demonstrated the lowest values followed by PAC.


2005 ◽  
Vol 288-289 ◽  
pp. 645-648
Author(s):  
Hwan Kim ◽  
Sung Ho Park ◽  
I.Y. Jung ◽  
S.B. Jeon ◽  
Kwon Yong Lee

In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion of sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji ı LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji ıLC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.


HortScience ◽  
2014 ◽  
Vol 49 (4) ◽  
pp. 448-452 ◽  
Author(s):  
Paul Deram ◽  
Mark G. Lefsrud ◽  
Valérie Orsat

Current greenhouse supplemental lighting technology uses broad-spectrum high-pressure sodium lamps (HPS) that, despite being an excellent luminous source, are not the most efficient light source for plant production. Specific light frequencies in the 400- to 700-nm range have been shown to affect photosynthesis more directly than other wavelengths (especially in the red and blue ranges). Light-emitting diodes (LEDs) could diminish lighting costs as a result of their high efficiency, lower operating temperatures, and wavelength specificity. LEDs can be selected to target the wavelengths used by plants, enabling growers to customize the light produced, to enable maximum plant production and limit wavelengths that do not significantly impact plant growth. In our experiment, hydroponically grown tomato plants (Solanum lycopersicum L.) were grown using a full factorial design with three light intensities (high: 135 μmol·m−2·s−1, medium: 115 μmol·m−2·s−1, and low: 100 μmol·m−2·s−1) at three red (661 nm) to blue (449 nm) ratio levels (5:1, 10:1, and 19:1). Secondary treatments for comparison were 100% HPS, 100% red LED light supplied from above the plant, 100% red LED light supplied below the plant, a 50%:50% LED:HPS mixture, and a control (no supplemental lighting). Both runs of the experiment lasted 120 days during the Summer–Fall 2011 and the Winter–Spring 2011–12. The highest biomass production (excluding fruit) occurred with the 19:1 ratio (red to blue) with increasing intensity resulting in more growth, whereas a higher fruit production was obtained using the 5:1 ratio. The highest marketable fruit production (fruit over 90 g) was obtained with the 50%:50% LED:HPS followed by 5:1 high and 19:1 high. Consistently the 5:1 high performed well in every category. LEDs have been shown to be superior in fruit production over HPS alone, and LEDs can improve tomato fruit production when mixed with HPS. LEDs provide a promising mechanism to enhance greenhouse artificial lighting systems.


Sign in / Sign up

Export Citation Format

Share Document