scholarly journals Review of constructive analytical methods for determining the amount of aluminum in environmental and human biological samples

2019 ◽  
Vol 2 (01) ◽  
pp. 15-32 ◽  
Author(s):  
Farnaz Hosseini ◽  
Sara Davari ◽  
Mojtaba Arjomandi

Aluminum is a toxic metal and causes pollution in soil, water, and air. Afterward, a lot of patients suffer renal failure due to the accumulation of aluminum in the tissues of kidneys. Also, a high concentration of aluminum in plants tissues makes agricultural food toxic. Therefore, measuring aluminum in water, soil, air, human organs, tissues of plants and each food (or agricultural product is so necessary for protecting human health. Also, the effect of some parameters such as pH and temperature on decrease or increase in the amount of aluminum in water and other samples are stated. In this review, the analytical methods such as fluorimetric, ICP-MS, colorimetric, graphite furnace/flame atomic absorption spectrometry, etc. which have been applied for measuring the amount of aluminum (especially   ) in environmental and human biological samples are assesse

2011 ◽  
Vol 74 (11) ◽  
pp. 1938-1943 ◽  
Author(s):  
C. RUBIO ◽  
A. JALILLI ◽  
A. J. GUTIÉRREZ ◽  
D. GONZÁLEZ-WELLER ◽  
F. HERNÁNDEZ ◽  
...  

The aim of this study was to determine the levels of metals (Ca, K, Na, Mg) and trace metals (Ni, Fe, Cu, Mn, Zn, Pb, Cd) in two fish species (gilthead bream [Sparus aurata] and sea bass [Dicentrarchus labrax]) collected from fish farms located along the coast of Tenerife Island. Ca, K, Na, Mg, Fe, Cu, Zn, and Mn were measured by flame atomic absorption spectrometry, whereas Pb, Cd, and Ni were determined using graphite furnace atomic absorption spectrometry. Mean Fe, Cu, Mn, and Zn contents were 3.09, 0.59, 0.18, and 8.11 mg/kg (wet weight) in S. aurata and 3.20, 0.76, 0.24, and 10.11 mg/kg (wet weight) in D. labrax, respectively. In D. labrax, Ca, K, Na, and Mg levels were 1,955, 2,787, 699.7, and 279.2 mg/kg (wet weight), respectively; in S. aurata, they were 934.7, 3,515, 532.8, and 262.8 mg/kg (wet weight), respectively. The Pb level in S. aurata was 7.28 ±3.64 μg/kg (wet weight) and, in D. labrax, 4.42 ±1.56 μg/kg (wet weight). Mean Cd concentrations were 3.33 ±3.93 and 1.36 ± 1.53 μg/kg (wet weight) for D. labrax and S. aurata, respectively. All Pb and Cd levels measured were well below the accepted European Commission limits, 300 and 50 μg/kg for lead and cadmium, respectively.


2016 ◽  
Vol 99 (1) ◽  
pp. 252-259 ◽  
Author(s):  
Aparecida M S Mimura ◽  
Marcone A L Oliveira ◽  
Virginia S T Ciminelli ◽  
Julio C J Silva

Abstract An ultrasound method for simultaneous extraction of Cr, Cu, Zn, Cd, and Pb from sediment, and determination by flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) was proposed. The experimental results obtained using analytical curves and the method of standard additions agreed at a confidence level of 95% for all the analytes, as determined by FAAS and GFAAS, indicating no significant matrix effects. Recoveries ranged from 80.1 to 93.7% (certified reference material) and from 89 to 107% (spike tests). The LOD and LOQ results from the method were consistent with the techniques used (FAAS and GFAAS), with high analytical throughput. The proposed method was then used to determine Cr, Cu, Zn, Cd, and Pb in river sediment samples from Rio Doce, Minas Gerais, Brazil. The results indicated levels below those permitted by Brazilian legislation for all the analytes, with the exception of Cr.


2018 ◽  
Vol 114 (1) ◽  
pp. 137-150
Author(s):  
Michał Halagarda ◽  
Joanna Ptasińska-Marcinkiewicz ◽  
Kamil Fijorek

Milk is one of the most important foodstuffs and raw materials in the food industry. As the first complete food available to infant mammals, it is bioactive and it contains all the indispensable nutrients. Organic farming is deemed to produce high quality food under sustainable conditions and, at the same time, to protect the natural environment within the farm. However, the most recent food and nutrition research does not confirm the extensive health benefits related to the consumption of organic products. The objective of the research study was to evaluate and compare the quality of commercial organic and conventional cow’s milk as regards the contents of some selected mineral compounds. The research was conducted on the organic and conventional cow’s milk available on the market in Southern Poland. The milk samples were analysed for the concentration of selected minerals contained therein, including some selected toxic metals; the analyses were performed with the use of flame atomic absorption spectrometry, atomic emission spectrometry, and graphite furnace atomic absorption spectrometry. The results of the research show that, in terms of the contents of micro- and macroelements, the organic and conventional milk do not differ significantly. The differences were found only between the amounts of sodium and manganese. The organic milk contained, on average, a statistically significantly smaller amount of those elements. Moreover, the presence of lead was detected in one type of the organic milk, although its amount determined (5.24 mg/l) was within the acceptable limits. Cadmium (amounting to 0.12 and 0.15 μg/l) was found in the two types of milk derived from the same company and in one type of organic milk; however, its concentration in the latter milk type was at a relatively low level (0.04 μg/l).


2001 ◽  
Vol 73 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Ewa Bulska

Atomic spectrometry and electrochemistry are usually recognized as independent analytical tools used for different purposes. Here, a brief review is given of the advantages of using electrochemistry in the various fields of atomic spectrometry techniques. In the first part, the application of electrochemical preconcentration before the atomic spectrometry will be addressed and exemplified. Electrochemical preconcentration could be used with flame atomic absorption spectrometry (AAS) or graphite furnace AAS as well as with atomic emission plasma sources. The second area of the applications of electrochemistry will be directly focused on the graphite furnace AAS where the electrodeposition onto the graphite surface of the atomizer could be used for both in situ analyte preconcentration or modification of the surface by noble metals.


1994 ◽  
Vol 48 (9) ◽  
pp. 1156-1165 ◽  
Author(s):  
James M. Harnly

Computer modeling was used to compare calibration curves and relative concentration errors for normal, linearized, and three-field Zeeman GF-AAS. The model assumed that either photon shot noise or the combination of photon shot and analyte fluctuation noise were limiting and that the sole source of nonlinearity was stray light. For absorbance, the calibration range and the relative concentration error for all three methods are almost identical. The difference is a reduced-sensitivity curve for three-field Zeeman, which offers a relative concentration error advantage in the concentration region where the most sensitive curve rolls over. For integrated absorbance, the sum of absorbances over the analytical peak, linearized Zeeman provides a significant relative concentration error advantage over the other methods at the high concentration end of the calibration curve. The calibration range is effectively extended by at least 1.5 orders of magnitude. This advantage arises from integration of absorbances which have a linear relationship to concentration. At high concentrations, absorbances computed for normal and three-field Zeeman are nonlinear with respect to concentration. Three-field Zeeman offers no advantage over normal Zeeman for integrated absorbance.


Sign in / Sign up

Export Citation Format

Share Document