scholarly journals Impact crushing behavior of foam-filled paraboloid shells using numerical and experimental methods

2017 ◽  
Vol 24 (4) ◽  
pp. 1912-1921
Author(s):  
Sh. Shams ◽  
H. Haddadpour ◽  
H. Tuzandejani ◽  
S.A.A. Hosseini ◽  
M. Vatanparast ◽  
...  
2010 ◽  
Vol 10 (1) ◽  
pp. 1-17 ◽  
Author(s):  
AL EMRAN ISMAIL

The concerns of automotive safety have been given special attention in order to reduce human fatalities or injuries. One of the techniques to reduce collision impact or compression energy is by filling polymeric foam into metallic tubes. In this work, polyurethane foam was introduced into the steel extrusion tubes and quasi-statically compressed at constant cross-head displacement. Different tube thicknesses and foam densities were used and these parameters were related to the crashworthiness aspect of the foam-filled structures. It is found that both tube thickness and foam density played an important role in increasing the crashworthiness behaviours of the structures but when the tube thickness reached certain value, foam density unable to properly work in increasing the energy absorption of the structures.


2012 ◽  
Vol 626 ◽  
pp. 1038-1041 ◽  
Author(s):  
Akbar Othman ◽  
Shahrum Abdullah ◽  
Ahmad Kamal Ariffin ◽  
Nik Abdullah Nik Mohamed ◽  
Helmi Rashid

The present papers determine the effect of composite pultrusion square tubes E-glass polyester empty and polymeric foam-filled subjected to axial compressive loading. The specimens of square composite pultrusion were compressed experimentally under axial loadings to examine the effect of empty and polymeric foam-filled with different wall-thickness. The wall-thickness was used in this study were 2.1 and 2.4 mm. During the experimental observation, three characteristic crushing stages were identified as initial peak load, progressive crushing and compaction zone stages. The composite pultrusion square tube profile were analyzed and investigated in terms of crashworthiness parameters to meet the improvement of structural material widely used in automobile, aerospace and marine applications. Result obtained from experimental analysis such that initial peak load, mean load, energy absorption and specific energy absorption versus displacement curves were compared for each specimen. Results showed that the tubes energy absorption was affected significantly by different tube profile. It is also found that the polymeric foam-filled exhibit superb crashworthy structure on specific absorbed energy and the amount of initial peak load, mean load and absorbed energy recorded higher than the empty tube profiles.


2004 ◽  
Vol 54 (12) ◽  
pp. 556-561 ◽  
Author(s):  
Yoshiaki YASUI ◽  
Mai MOCHIDA ◽  
Yasumitsu HOUZOUJI

2013 ◽  
Vol 664 ◽  
pp. 649-653 ◽  
Author(s):  
S. Abdullah ◽  
A.A. Arifin ◽  
A. Othman ◽  
A.K. Ariffin ◽  
N.A.N. Mohamed

In this present paper, the two square cross-section pultruded composite tubes E-glass reinforced polyester unfilled and polyurethane hybrid foam-filled subjected to oblique load are investigated and examined experimentally. The oblique angles were varied from 5 to 20 with an increment of every 5 degree. The bottom base platen of clamped specimen was adjusted inclination angle of loading direction with respect to the tube axis. During the experimental observation, three characteristic crushing stages were identified as initial peak load stage, progressive crushing stage and compaction zone stage. The pultruded composite tube wall-thicknesses of at 3 mm were examined, and the effects of crushing behaviors and failure modes were analyzed and discussed. Results showed that the tube’s energy absorption capability was affected significantly by varying of oblique loading. It is also found that as the filling polyurethane foam into pultruded E-glass reinforced polyester composite square tube increases the amount of specific absorbed energy than the empty tubes.


Author(s):  
Raghu V. Prakash ◽  
Sanjay Toshniwal

Abstract Occupant safety has become increasingly important in the recent times. At the instance of an accident or collision, structures with high energy absorption can provide better occupant safety. Thin-walled tubes are widely used as energy absorbers in automobiles and other structures. In the present work, crashworthiness characteristics of double wall empty and double wall foam filled tubes are investigated. Thin wall extruded aluminum square tubes are used in this study. Polymer foam of three different densities, viz., 40 kg/m3, 80 kg/m3, 140 kg/m3 was used as filler material between the two tubes to fabricate a double wall foam filled tube. Both parallel and diamond configurations were considered for double walled empty and foam filled configurations. All the specimens were compressed at a displacement rate of 100 mm/min. Crushing of different configurations was numerically analyzed using nonlinear finite element tool LS-Dyna®. In double wall empty configuration, diamond arrangement absorbed more energy compared to parallel due to the interaction between inner and outer tubes. Results indicate that energy absorption increases with the filling of foam. Compared to double wall tubes, the maximum increase in energy absorption of ∼ 50% is observed in foam filled tubes. Using Computed Tomography (CT) scan of specimens, it is observed that foam filling alters the crushing behavior of the inner and outer tubes.


2021 ◽  
pp. 109963622110509
Author(s):  
Seyed Mohammad Hossein Mirbagheri ◽  
Mina Salehi

This article investigates the quasi-static compressive behavior and the drop weight impact tests during the crashing of energy-absorbing structures such as aluminum foam-filled tubes. The closed-cell Al and A356 Alloy foams were cast and, after cutting, inserted into the Al thin wall tube as axial fillers of single-, double- and quad-layer structures. Then, the specific energy absorption (SEA), complementary energy (CE), normalized energy (NE), and specific normalized energy (SNE) are calculated based on static and dynamic test results under uniaxial loading. In this new method, values of NE and SNE are always between 0 and 1. Results show that the SEA-strain curves obtained from crashing the foam-filled tubes were linear and overlapping under static and dynamic loading. However, NE curves for dynamic tests were cyclic and in the static tests were asymptotic non-linear, and utterly separable. Results indicated that the SNE for Al, A356 single layer, Al-A356 double-, and Al-A356-Al-A356 quad-layer foam-filled tubes during dynamic tests were 0.25, 0.29, 0.31, and 0.31, while for the static tests, 0.14,0.15, 0.17, and 0.14 were recorded. It was found that CE and NE energies were better than the SEA energy for recognizing plastic deformation and crushing behavior.


Sign in / Sign up

Export Citation Format

Share Document