Crushing Behavior of Hybrid Foam-Filled Pultruded Composite under Quasi-Static Oblique Loading

2013 ◽  
Vol 664 ◽  
pp. 649-653 ◽  
Author(s):  
S. Abdullah ◽  
A.A. Arifin ◽  
A. Othman ◽  
A.K. Ariffin ◽  
N.A.N. Mohamed

In this present paper, the two square cross-section pultruded composite tubes E-glass reinforced polyester unfilled and polyurethane hybrid foam-filled subjected to oblique load are investigated and examined experimentally. The oblique angles were varied from 5 to 20 with an increment of every 5 degree. The bottom base platen of clamped specimen was adjusted inclination angle of loading direction with respect to the tube axis. During the experimental observation, three characteristic crushing stages were identified as initial peak load stage, progressive crushing stage and compaction zone stage. The pultruded composite tube wall-thicknesses of at 3 mm were examined, and the effects of crushing behaviors and failure modes were analyzed and discussed. Results showed that the tube’s energy absorption capability was affected significantly by varying of oblique loading. It is also found that as the filling polyurethane foam into pultruded E-glass reinforced polyester composite square tube increases the amount of specific absorbed energy than the empty tubes.

2012 ◽  
Vol 626 ◽  
pp. 1038-1041 ◽  
Author(s):  
Akbar Othman ◽  
Shahrum Abdullah ◽  
Ahmad Kamal Ariffin ◽  
Nik Abdullah Nik Mohamed ◽  
Helmi Rashid

The present papers determine the effect of composite pultrusion square tubes E-glass polyester empty and polymeric foam-filled subjected to axial compressive loading. The specimens of square composite pultrusion were compressed experimentally under axial loadings to examine the effect of empty and polymeric foam-filled with different wall-thickness. The wall-thickness was used in this study were 2.1 and 2.4 mm. During the experimental observation, three characteristic crushing stages were identified as initial peak load, progressive crushing and compaction zone stages. The composite pultrusion square tube profile were analyzed and investigated in terms of crashworthiness parameters to meet the improvement of structural material widely used in automobile, aerospace and marine applications. Result obtained from experimental analysis such that initial peak load, mean load, energy absorption and specific energy absorption versus displacement curves were compared for each specimen. Results showed that the tubes energy absorption was affected significantly by different tube profile. It is also found that the polymeric foam-filled exhibit superb crashworthy structure on specific absorbed energy and the amount of initial peak load, mean load and absorbed energy recorded higher than the empty tube profiles.


2013 ◽  
Vol 446-447 ◽  
pp. 113-116
Author(s):  
A. Othman ◽  
A.A. Arifin ◽  
S. Abdullah ◽  
A.K. Ariffin ◽  
N.A.N. Mohamed

This paper present on discusses the effect of crashworthiness parameters on pultrusion and hybrid laminated composite square tubes via experimentally. The wall-thicknesses of 2.1 for pultrusion and 1.6 mm aluminum wrap 1 layered were examined at the material fiber type of E-glass reinforced polyester resin of square cross-section subjected to axial quasi-static loading. Comparison has been made for both of type of composite material. During experimental observation, some of crushing modes on stages were identified as initial peak load stage, progressive crushing stage and compaction zone stage. The effects of crushing parameters and failure modes were analyzed and discussed. Results showed that the tubes energy absorption capability was affected significantly by varying of different type of composite in terms of composite fabrication and variable aspect of cross-section. It is also found that different type of fabrication on different manufacturing process of composite reveal in terms of internal energy during crushed events.


2013 ◽  
Vol 594-595 ◽  
pp. 707-710
Author(s):  
A.A. Arifin ◽  
A. Othman

In this paper presents the effect of energy absorption on thin-walled aluminum cross-section square tubes wrapped with woven E-glass fiber laminated composite subjected to quasi-static axial compression. The compression test was carried out experimentally to examine the amount of energy can be absorbed as well as to observe for failure behavior for each specimens. The wall-thicknesses aluminum square of 1.9 mm was investigated and woven E-glass fiber laminate reinforced polyester resin was examined. Two different numbers of layers woven E-glass were investigated and examined. Result obtained from experimental analysis such that initial peak load, mean load, quasi-static absorbed energy against displacement curves were recoded and plotted then compared for each specimen profile. Results indicated that the tubes crashworthy structure was affected significantly by different number of layers wrapped on wall aluminum square profile and also that the effect of crushing behaviors and failure modes was discussed.


2013 ◽  
Vol 594-595 ◽  
pp. 711-714
Author(s):  
A.A. Arifin ◽  
A. Othman

The present paper determines the effect of crush force efficiency on laminate glass wrapped on aluminum cross-section square tubes under quasi-static loading. The analysis was examined via experimentally. The wall-thicknesses aluminum square of 1.6 mm was investigated on wrapped woven composite type of E-glass fiber reinforced polyester resin. Two different numbers of layers woven E-glass were investigated and examined. Result obtained from experimental analysis such that initial peak load, mean load, versus displacement curves were compared for each specimen. Results showed that the tubes energy absorption was affected significantly by different number of layers wrapped on wall aluminum square profile and also that the effect of crushing behaviors and failure modes was discussed.


2020 ◽  
Vol 4 (4) ◽  
pp. 182
Author(s):  
Luciano Ombres ◽  
Salvatore Verre

In the paper, the bond between a composite strengthening system consisting of steel textiles embedded into an inorganic matrix (steel reinforced grout, SRG) and the concrete substrate, is investigated. An experimental investigation was carried out on medium density SRG specimens; direct shear tests were conducted on 20 specimens to analyze the effect of the bond length, and the age of the composite strip on the SRG-to-concrete bond behavior. In particular, the tests were conducted considering five bond length (100, 200, 250, 330, and 450 mm), and the composite strip’s age 14th, 21st, and 28th day after the bonding. Test results in the form of peak load, failure modes and, bond-slip diagrams were presented and discussed. A finite element model developed through commercial software to replicate the behavior of SRG strips, is also proposed. The effectiveness of the proposed numerical model was validated by the comparison between its predictions and experimental results.


2017 ◽  
Vol 865 ◽  
pp. 612-618 ◽  
Author(s):  
M. Malawat ◽  
Jos Istiyanto ◽  
D.A. Sumarsono

Crush initiators are the weakest points to reduce initial peak load force with significant energy absorption ability. The objective of this paper is to study the effects of square tube thickness and crush initiators position for impact energy absorber (IEA) performance on thin-walled square tubes. Two square tubes having thickness about 0.6 mm (specimen code A) and 1 mm (specimen Code C) were tested under dynamic load. The crushing initiator is designed around the shape of the tube wall and has eight holes with a fixed diameter of 6.5 mm. In the experiment, the crushing initiator was determined at 5 different locations on the specimen wall. These locations are 10 mm, 20 mm. 30 mm, 40 mm, and 50 mm measured from the initial collision position of the specimen tested. The impact load mass was about 80 kg and had a drop height of about 1.5 m. Using the simulation program of the LabVIEW Professional Development System 2011 and National Instrument (NI) 9234 software equipped with data acquisition hardware NI cDAQ-9174 the signal from the load cell was sent to a computer. By controlling the thickness of the thin-walled square tube, the peak loading force can be decreased by approximately 56.75% and energy absorption ability of IEA can be increased approximately to 11.83%. By using different thin-walled square tube can produce different best crush initiators position with the lowest peak load force.


2021 ◽  
Vol 15 ◽  
pp. 159-164
Author(s):  
Fauzan Djamaluddin

In this study, the researcher carried out a comparative investigation of the crashworthy features of different tubular structures with a quasi-static three bending point, like the foam-filled two and tri circular tube structures. Energy absorption capacities and failure modes of different structures are also studied. Furthermore, the general characteristics are investigated and compared for instance the energy absorption, specific energy absorption and energy-absorbing effectiveness for determining the potential structural components that can be used in the field of vehicle engineering. Experimental results indicated that under the bending conditions, the tri foam-filled structures were higher crashworthiness behaviour than the two foam-filled circular structures. Therefore, this study recommended the use of crashworthy structures, such as foam-filled tri circular tubes due to the increased bending resistance and energy-absorbing effectiveness.


Sign in / Sign up

Export Citation Format

Share Document