scholarly journals Design of all Optical Packet Switching Networks

Author(s):  
Hussein T. Mouftah

Optical switches and wavelength converters are recognized as two of the most important DWDM system components in future all-optical networks. Optical switches perform the key functions of flexible routing, reconfigurable optical cross-connect (OXC), network protection and restoration, etc. in optical networks. Wavelength Converters are used to shift one incoming wavelength to another outgoing wavelength when this needs to be done.  Always residing in optical switches, they can effectively alleviate the blocking probability and help solve contention happening at the output port of switches. The deployment of wavelength converters within optical switches provides robust routing, switching and network management in optical layer, which is critical to the emerging all-optical Internet. However, the high cost of wavelength converters at current stage of manufacturing technology has to be taken into consideration when we design node architectures for an optical network. Our research explores the efficiency of wavelength converters in a long-haul optical network at different degrees of traffic load by running a simulation. Then, we propose a new cost-effective way to optimally design wavelength-convertible switch so as to achieve higher network performance while still keeping the total network cost down. Meanwhile, the routing and wavelength assignment (RWA) algorithm used in the research is designed to be a generic one for both large-scale and small-scale traffic. Removing the constraint on the traffic load makes the RWA more adaptive and robust. When this new RWA works in conjunction with a newly introduced concept of wavelength-convertible switches, we shall explore the impact of large-scale traffic on the role of wavelength converter so as to determine the method towards optimal use of wavelength convertible switches for all-optical networks.  

2016 ◽  
Vol 7 (4) ◽  
pp. 26
Author(s):  
Shilpa S Patil ◽  
Bharat S Chaudhari

Efficient routing with optimal resources is one of the challenging tasks in the design of DWDM networks. Wavelength Converter (WC) is an important resource, as the placement of WCs affects the network performance and the quantity of WCs affects the cost of the network. With the help of WCs the network performance can be maximized by removing the wavelength continuity constraint. As WCs are very expensive, selecting the candidate nodes for the placement of WCs in a network is important. In this paper we have proposed an optimized approach for the placement of WCs in the presence of tunable transceivers (TTRs) and fixed transceivers (FTRs). The performance analysis has been carried out for above approaches. Observation shows that sparse partial wavelength converters with various loads requires only 2.4% converters. When tunable transceivers are used an average reduction of 73% in blocking probability and average saving of 91% in required number of converters. 


2017 ◽  
Vol 10 (3) ◽  
pp. 1383-1402 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate – specifically the Madden–Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).


Author(s):  
I. Smyrnov

Rural tourism is now seen as an important direction of development of the regional economy. From the perspective of sustainable development rural tourism affects the economic, social and environmental aspects of the regional and local economy. Rural tourism is closely linked with agrotourism, eco-tourism, natural tourism and so on. Sustainable rural tourism can be realized by applying logistic, geographic and marketing approaches as components of sustainable development strategies. Logistics approach is determined by logistic potential of resource base of rural tourism and appropriate tourist flows regulation. In this context in the article the concept of tourism capacity or capacity of the resource base of rural tourism is used. The problem of the definition of tourism pressure on the resource base of rural tourism, particularly in natural landscapes is disclosed. Unlike environmental and recrealogical sciences, which stop at the capacity definition of the resource base of tourism, tourism logistics compares this figure with the existing tourist flows and accordingly determines the safe way of tourism management to ensure its sustainable nature. It was shown that these strategies boil down to two basic types – the further development of tourism in a particular area or limit such activities to conserve the resource base of tourism. Recreational (travel) load is the indicator that reflects the impact of tourism on the resource base of tourism (especially landscape complex), expressed by the number of tourists or tourists-days per area unit or per tourist site for the certain period of time (day, month, season year). There are actual, allowable (the maximum) and destructive (dangerous) types of travel load. The latter can lead recreational area or resource base of rural tourism to destruction. Thus, depending on the intensity of tourism resource base using in rural tourism it may change – according to tourist consumption. Large number of tourists affects the entire range of recreational destinations and their individual components. The most vulnerable part of the environment in this sense is vegetation, except that significant changes may occur with soil, water bodies, air and so on. The geographic dimension of the problem of rural tourism sustainable development includes the concept of zoning, ie the division of the territory, offering to develop rural tourism in several zones with different modes of travel usage – from a total ban (in protected areas) for complete freedom with transitional stages, involving various limit degrees in the development of rural tourism. Marketing approach reflects the application of the curve R. Butler to the stages of development of rural tourism destinations with the release of such steps as: research, involvement, development, consolidation, stagnation (also called “saturation”), revival or decline. Shown the models that link the stage of resource base tourist development (under “Curve Butler”), strength of tourism consumption the magnitude of such effects (eg weak (disperse) impact in large scale, strong (concentrated) impact in large scale, strong (concentrated) impact in small scale, weak (disperse) impact in small scale), dynamics of tourism development at the territory.


2016 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 km up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PBytes of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Center (LRZ) in Garching, Germany. About 140 TBytes of post-processed data are stored on the CINECA supercomputing center archives and are freely accessible to the community thanks to an EUDAT Data Pilot project. This paper presents the technical and scientific setup of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given: an improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increases is observed. It is also shown that including stochastic parameterisation in the low resolution runs helps to improve some aspects of the tropical climate – specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).


Author(s):  
Jerry Jen-Hung Tsai ◽  
Jeff WT Kan ◽  
Xiangyu Wang ◽  
Yingsiu Huang

This chapter presents a study on the impact of design scales on collaborations in 3D virtual environments. Different domains require designers to work on different scales; for instance, urban design and electronic circuit design operate at very different scales. However, the understanding of the effects of scales upon collaboration in virtual environment is limited. In this chapter, the authors propose to use protocol analysis method to examine the differences between two design collaboration projects in virtual environments: one large scale, and another small scale within a similar domain. It shows that the difference in scale impacted more on communication control and social communication.


Sign in / Sign up

Export Citation Format

Share Document