Removal of basic dyes from the aqueous solution using activated carbon Derived from Waste Tea Dust by Chemical Activation Method: A Comparative Study

2017 ◽  
Vol 100 (3) ◽  
pp. 299-312 ◽  
Author(s):  
Muhammad Imran Din ◽  
Sania Ashraf ◽  
Azeem Intisar

In this review, various methods of preparation of activated carbon from agricultural and commercial waste material are reviewed. In addition, we also discuss various activation treatments using a comparative approach. The data are organised in tabulated form for ease of comparative study. A review of numerous characterisation techniques is also provided. The effect of time and temperature, activation conditions, carbonisation conditions and impregnation ratios are explained and several physical and chemical activation treatments of raw materials and their impact on the micro- and mesoporous volumes and surface area are discussed. Lastly, a review of adsorption mechanisms of activated carbon (AC) is also provided.


2014 ◽  
Vol 875-877 ◽  
pp. 196-201 ◽  
Author(s):  
Mohd Faisal Taha ◽  
Ahmad S. Rosman ◽  
Maizatul S. Shaharun

The potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Pb (II) ion from aqueous solution was investigated. Rice husk-based activated carbon was preparedviachemical activation process using NaOH followed by the carbonization process at 500°C. Morphological analysis was conducted using field-emission scanning electron microscope /energy dispersive X-ray (FESEM/EDX) on three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon. These three samples were also analyzed for their C, H, N, O and Si contents using CHN elemental analyzer and FESEM/EDX. The textural properties of rice husk-based activated carbon, i.e. surface area (253 m2/g) and pore volume (0.17 cm2/g), were determined by N2adsorption. The adsorption studies using rice husk-based activated carbon as an adsorbent to remove Pb (II) ion from aqueous solution were carried out at a fixed initial concentration of Pb (II) ion (150 ppm) with varying adsorbent dose as a function of contact time at room temperature. The concentration of Pb (II) ion was determined by atomic absorption spectrophotometer (AAS). The removal of Pb (II) ion from aqueous solution increased from 35 % to 82 % when the amount of rice husk-based activated carbon was increased from 0.05 g to 0.30 g. The equilibrium data obtained from adsorption studies was found to fit both Langmuir and Freundlich adsorption isotherms.


2013 ◽  
Vol 773-774 ◽  
pp. 471-477
Author(s):  
Md Mokhlesur Rahman ◽  
Mohamed Awang ◽  
Mohosina Bintey Shajahan ◽  
Tariq Abdul Razak ◽  
Kamaruzzaman Yunus

The optimum condition for preparing a highly efficient activated carbon has been investigated in this work. The effects of different activation temperatures on the pore structure and surface morphology of highly efficient activated carbon (AC) derived from waste palm shell by chemical activation method using phosphoric acid as activating agent were studied. For activation, different activation temperatures in the range of 550 °C-650 °C were carried out. Activated carbon with well developed pore size were produced at activation temperature of 600 °C for 2 hours. At this temperature the Brunauer , Emmett and Teller (BET) surface areas are 1287 m2g-1, the total pore volume for adsorption and desorption are 0.742 cm3 g-1. Scanning Electron Microscope also confirmed the porosity of the highly efficient activated carbon. Finally it was tested in vitro to determine its adsorbing capacity for paraquat as a toxin. For optimum adsorption ability of activated carbon for paraquat, 0.9% NaCl solution is the most suitable solvent. The paraquat preferentially adsorbed onto the activated carbon in NaCl solution. The adsorption ability of the activated carbon (the amount adsorbed) for paraquat observed to be 99.9 mg g-1.


2018 ◽  
Author(s):  
Wahyuningsih ◽  
Zainal Abidin ◽  
Mohamad Endy Yulianto ◽  
Indah Hartati ◽  
Eflita Yohana

Sign in / Sign up

Export Citation Format

Share Document