Influence of Ferulic Acid on Monosodium Glutamate Toxicity in Rats: Hematological, Clincopathological and Histopathological Studies.

2018 ◽  
Vol 6 (1) ◽  
pp. 45-56
Author(s):  
Lalrinzuali Sailo ◽  
◽  
Meesala Krishna Murthy ◽  
Khandayataray Pratima ◽  
Vikas Kumar Roy ◽  
...  

Monosodium glutamate is naturally available non-essential amino acids, which found in naturally occurring foods and used as flavour enhancer worldwide. Monosodium glutamate is believed to be linked with diverse health problems. The aim of the study was toxic effects of monosodium glutamate (MSG) and the protective role of L-carnitine, light on the available literature from last 25 years about diverse toxicity studies which had been carried out on animal and human models. Google scholar, NCBI, PUBMED, EMBASE, Wangfang databases, and Web of Science databases were used to retrieve the available studies. MSG was linked with deleterious effects particularly in animals including induction of obesity, diabetes, hepatotoxic, neurotoxic and genotoxic effects showed in Literature. Few reports revealed increased hunger, food intake, and obesity in human subjects due to MSG consumption. Hepatotoxic, neurotoxic, and genotoxic effects of monosodium glutamate on humans carried out very limitedly. High consumption of monosodium glutamate may be linked with harmful health effects showed in available literatures. So, it is recommended to use common salt instead of MSG. Furthermore, intensive research is required to explore monosodium glutamate–related molecular and metabolic mechanisms. L-carnitine can protect from Hepatotoxic, neurotoxic, renal impairment and genotoxic effects functionally, biochemically and histopathologically with a corresponding reduction of oxidative stress.


2020 ◽  
pp. 20-26
Author(s):  
Vladmila Bojanić ◽  
Stevo Najman ◽  
Aleksandra Veličkov ◽  
Novica Bojanić ◽  
Jelena Milenković

Author(s):  
Hui-Min Yap ◽  
Kwan-Liang Lye ◽  
Loh Teng-Hern Tan

The increased concentration of extracellular glutamate has been reported to play a key role in most of the neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease, even though its importance as an amino acid neurotransmitter in mammalian. Glutamate toxicity, which can be caused by excessive intake of monosodium glutamate (MSG), is the major contributor to pathological neuronal cell death. It causes neuronal dysfunction and degeneration in the central nervous system (CNS). Glutamate neurotoxicity can be categorized into two forms, which are receptor-mediated glutamate excitotoxicity and non-receptor mediated glutamate oxidative toxicity. The receptor-mediated glutamate excitotoxicity involved excessive stimulation of glutamate receptors (GluRs) which lead to excessive ion calcium (Ca2+) influx and activates a cell death cascade involving the accumulation of mitochondrially generated reactive oxygen species (ROS). Studies showed excessive extracellular glutamate leads to nerve cell death via the activation of N-methyl-Daspartate (NMDA) receptors in the cases of trauma or stroke. Whereas non-receptor mediated oxidative toxicity involved the breakdown of the cystine/glutamate antiporter (xc - ) mechanism, which leads to the depletion of glutathione (GSH) and causes oxidative stress and cell death. The cystine/glutamate antiporter couples the import of cystine to the export of glutamate. The increased concentration of extracellular glutamate could inhibit the uptake of cystine, which is required for the synthesis of the intracellular antioxidant GSH. GSH plays an important role in the disposal of peroxides by brain cells and in the protection against ROS. Depletion of GSH renders the cell to oxidative stress and ultimately leading to cell death. This article aims to provide a comprehensive review of neurodegenerative diseases and the role of neurotoxin agents, glutamate in these diseases.


Author(s):  
Reham Z. Hamza ◽  
Fawziah A. Al-Salmi ◽  
Nahla S. El-Shenawy

AbstractObjectivesNanotechnology is an exciting field for investigators. Green zinc oxide nanoparticles (ZnO NPs) with Camellia sinensis extract complex are proved to be used in the treatment of the toxicity of monosodium glutamate (MSG) in the liver, kidney, and testis of rats. Therefore, the synthesized complex of green nanoparticles using green tea extract (GTE) was tested against the toxicity of MSG on the pancreas.MethodsThe glucose and insulin levels were estimated as well as some biochemical parameters for evaluating the antioxidant status of the pancreas tissue. The histopathological change of the pancreas also has been determined.ResultsIt indicates the biomedical capability of ZnO NPs/GTE to act as potent antidiabetic through decreasing blood glucose and increasing serum insulin also, inhibition of lipid peroxidation and enhancement of the antioxidant parameters.ConclusionsThe ZnO NPs/GTE enhanced the pancreatic cell and Langerhans islets as well lowered the sugar levels and stimulated insulin.


1982 ◽  
Vol 19 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Geraldine F. Swan

Sign in / Sign up

Export Citation Format

Share Document