scholarly journals Comprehensive Insight of Neurodegenerative Diseases and The Role of Neurotoxin Agents — Glutamate

Author(s):  
Hui-Min Yap ◽  
Kwan-Liang Lye ◽  
Loh Teng-Hern Tan

The increased concentration of extracellular glutamate has been reported to play a key role in most of the neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease, even though its importance as an amino acid neurotransmitter in mammalian. Glutamate toxicity, which can be caused by excessive intake of monosodium glutamate (MSG), is the major contributor to pathological neuronal cell death. It causes neuronal dysfunction and degeneration in the central nervous system (CNS). Glutamate neurotoxicity can be categorized into two forms, which are receptor-mediated glutamate excitotoxicity and non-receptor mediated glutamate oxidative toxicity. The receptor-mediated glutamate excitotoxicity involved excessive stimulation of glutamate receptors (GluRs) which lead to excessive ion calcium (Ca2+) influx and activates a cell death cascade involving the accumulation of mitochondrially generated reactive oxygen species (ROS). Studies showed excessive extracellular glutamate leads to nerve cell death via the activation of N-methyl-Daspartate (NMDA) receptors in the cases of trauma or stroke. Whereas non-receptor mediated oxidative toxicity involved the breakdown of the cystine/glutamate antiporter (xc - ) mechanism, which leads to the depletion of glutathione (GSH) and causes oxidative stress and cell death. The cystine/glutamate antiporter couples the import of cystine to the export of glutamate. The increased concentration of extracellular glutamate could inhibit the uptake of cystine, which is required for the synthesis of the intracellular antioxidant GSH. GSH plays an important role in the disposal of peroxides by brain cells and in the protection against ROS. Depletion of GSH renders the cell to oxidative stress and ultimately leading to cell death. This article aims to provide a comprehensive review of neurodegenerative diseases and the role of neurotoxin agents, glutamate in these diseases.

2019 ◽  
Vol 39 (20) ◽  
Author(s):  
Mi Hye Kim ◽  
Hong Jun Lee ◽  
Sang-Rae Lee ◽  
Hyun-Shik Lee ◽  
Jae-Won Huh ◽  
...  

ABSTRACT Glutamate is an essential neurotransmitter in the central nervous system (CNS). However, high glutamate concentrations can lead to neurodegenerative diseases. A hallmark of glutamate toxicity is high levels of reactive oxygen species (ROS), which can trigger Ca2+ influx and dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Peroxiredoxin 5 (Prx5) is a well-known cysteine-dependent peroxidase enzyme. However, the precise effects of Prx5 on glutamate toxicity are still unclear. In this study, we investigated the role of Prx5 in glutamate-induced neuronal cell death. We found that glutamate treatment induces endogenous Prx5 expression and Ca2+/calcineurin-dependent dephosphorylation of Drp1, resulting in mitochondrial fission and neuronal cell death. Our results indicate that Prx5 inhibits glutamate-induced mitochondrial fission through the regulation of Ca2+/calcineurin-dependent dephosphorylation of Drp1, and it does so by scavenging cytosolic and mitochondrial ROS. Therefore, we suggest that Ca2+/calcineurin-dependent mitochondrial dynamics are deeply associated with glutamate-induced neurotoxicity. Consequently, Prx5 may be used as a potential agent for developing therapies against glutamate-induced neurotoxicity and neurodegenerative diseases where it plays a key role.


2009 ◽  
Vol 108 (2) ◽  
pp. 430-436 ◽  
Author(s):  
Changhong Xing ◽  
Sunryung Lee ◽  
Woo Jean Kim ◽  
Guang Jin ◽  
Yong-Guang Yang ◽  
...  

2005 ◽  
Vol 18 (3) ◽  
pp. 618-627 ◽  
Author(s):  
M. Somayajulu ◽  
S. McCarthy ◽  
M. Hung ◽  
M. Sikorska ◽  
H. Borowy-Borowski ◽  
...  

2010 ◽  
Vol 10 ◽  
pp. 1473-1482 ◽  
Author(s):  
Cheng Wang ◽  
Xuan Zhang ◽  
Fang Liu ◽  
Merle G. Paule ◽  
William Slikker, Jr.

Prolonged exposure of developing mammals to general anesthetics affects the N-methyl-D-aspartate (NMDA)–type glutamate or γ-aminobutyric acid (GABA) receptor systems and enhances neuronal toxicity. Stimulation of immature neurons by NMDA antagonists or GABA agonists is thought to increase overall nervous system excitability and may contribute to abnormal neuronal cell death during development. Although the precise mechanisms by which NMDA antagonists or GABA agonists cause neuronal cell death are still not completely understood, up-regulation of the NMDA receptor subunit NR1 may be an initiative factor in neuronal cell death. It is increasingly apparent that mitochondria lie at the center of the cell death regulation process. Evidence for the role of oxidative stress in anesthetic-induced neurotoxicity has been generated in studies that apply oxidative stress blockers. Prevention of neuronal death by catalase and superoxide dismutasein vitro, or by M40403 (superoxide dismutase mimetic)in vivo, supports the contention that the involvement of reactive oxygen species (ROS) and the nature of neuronal cell death in rodents is mainly apoptotic. However, more evidence is necessary to in order verify the role of the NMDA receptor subunit NR1 and ROS in anesthetic-induced neurodegeneration.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1098
Author(s):  
Deborah Cory-Slechta ◽  
Marissa Sobolewski ◽  
Günter Oberdörster

Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.


2019 ◽  
Vol 20 (13) ◽  
pp. 3131 ◽  
Author(s):  
Nami Kim ◽  
Dongmei Chen ◽  
Xiao Zhen Zhou ◽  
Tae Ho Lee

Regulated neuronal cell death plays an essential role in biological processes in normal physiology, including the development of the nervous system. However, the deregulation of neuronal apoptosis by various factors leads to neurodegenerative diseases such as ischemic stroke and Alzheimer’s disease (AD). Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase that activates death signaling and regulates apoptotic neuronal cell death. Although DAPK1 is tightly regulated under physiological conditions, DAPK1 deregulation in the brain contributes to the development of neurological disorders. In this review, we describe the molecular mechanisms of DAPK1 regulation in neurons under various stresses. We also discuss the role of DAPK1 signaling in the phosphorylation-dependent and phosphorylation-independent regulation of its downstream targets in neuronal cell death. Moreover, we focus on the major impact of DAPK1 deregulation on the progression of neurodegenerative diseases and the development of drugs targeting DAPK1 for the treatment of diseases. Therefore, this review summarizes the DAPK1 phosphorylation signaling pathways in various neurodegenerative diseases.


2019 ◽  
Vol 20 (10) ◽  
pp. 2504 ◽  
Author(s):  
Mehtab Khan ◽  
Bart P. F. Rutten ◽  
Myeong Ok Kim

Oxidative stress has been considered as the main mediator in neurodegenerative diseases. A high-fat diet (HFD) and metabolic diseases result in oxidative stress generation, leading to various neurodegenerative diseases via molecular mechanisms that remain largely unknown. Protein kinases play an important role in the homeostasis between cell survival and cell apoptosis. The mammalian sterile 20-like kinase-1 (MST1) protein kinase plays an important role in cellular apoptosis in different organ systems, including the central nervous system. In this study, we evaluated the MST1/c-Jun N-terminal kinase (JNK) dependent oxidative damage mediated cognitive dysfunction in HFD-fed mice and stress-induced hippocampal HT22 (mice hippocampal) cells. Our Western blot and immunofluorescence results indicate that HFD and stress-induced hippocampal HT22 cells activate MST1/JNK/Caspase-3 (Casp-3) signaling, which regulates neuronal cell apoptosis and beta-amyloid-cleaving enzyme (BACE1) expression and leads to impaired cognition. Moreover, MST1 expression inhibition by shRNA significantly reduced JNK/Casp-3 signaling. Our in vivo and in vitro experiments mimicking metabolic stress, such as a high-fat diet, hyperglycemia, and an inflammatory response, determined that MST1 plays a key regulatory role in neuronal cell death and cognition, suggesting that MST1 could be a potential therapeutic target for numerous neurodegenerative diseases.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1518
Author(s):  
Danuta Jantas ◽  
Władysław Lasoń

Neurodegenerative diseases are the most frequent chronic, age-associated neurological pathologies having a major impact on the patient’s quality of life. Despite a heavy medical, social and economic burden they pose, no causative treatment is available for these diseases. Among the important pathogenic factors contributing to neuronal loss during neurodegeneration is elevated oxidative stress resulting from a disturbed balance between endogenous prooxidant and antioxidant systems. For many years, it was thought that increased oxidative stress was a cause of neuronal cell death executed via an apoptotic mechanism. However, in recent years it has been postulated that rather programmed necrosis (necroptosis) is the key form of neuronal death in the course of neurodegenerative diseases. Such assumption was supported by biochemical and morphological features of the dying cells as well as by the fact that various necroptosis inhibitors were neuroprotective in cellular and animal models of neurodegenerative diseases. In this review, we discuss the relationship between oxidative stress and RIP1-dependent necroptosis and apoptosis in the context of the pathomechanism of neurodegenerative disorders. Based on the published data mainly from cellular models of neurodegeneration linking oxidative stress and necroptosis, we postulate that administration of multipotential neuroprotectants with antioxidant and antinecroptotic properties may constitute an efficient pharmacotherapeutic strategy for the treatment of neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document