scholarly journals Non-existence of axisymmetric optimal domains with smooth boundary for the first curl eigenvalue

Author(s):  
Alberto Enciso ◽  
Daniel Peralta-Salas
Keyword(s):  
2006 ◽  
Vol 11 (2) ◽  
pp. 115-121 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

The aim of this article is to study the existence of positive weak solution for a quasilinear reaction-diffusion system with Dirichlet boundary conditions,− div(|∇u1|p1−2∇u1) = λu1α11u2α12... unα1n,   x ∈ Ω,− div(|∇u2|p2−2∇u2) = λu1α21u2α22... unα2n,   x ∈ Ω, ... , − div(|∇un|pn−2∇un) = λu1αn1u2αn2... unαnn,   x ∈ Ω,ui = 0,   x ∈ ∂Ω,   i = 1, 2, ..., n,  where λ is a positive parameter, Ω is a bounded domain in RN (N > 1) with smooth boundary ∂Ω. In addition, we assume that 1 < pi < N for i = 1, 2, ..., n. For λ large by applying the method of sub-super solutions the existence of a large positive weak solution is established for the above nonlinear elliptic system.


Author(s):  
Kazuo Akutagawa

AbstractWe show a kind of Obata-type theorem on a compact Einstein n-manifold $$(W, \bar{g})$$ ( W , g ¯ ) with smooth boundary $$\partial W$$ ∂ W . Assume that the boundary $$\partial W$$ ∂ W is minimal in $$(W, \bar{g})$$ ( W , g ¯ ) . If $$(\partial W, \bar{g}|_{\partial W})$$ ( ∂ W , g ¯ | ∂ W ) is not conformally diffeomorphic to $$(S^{n-1}, g_S)$$ ( S n - 1 , g S ) , then for any Einstein metric $$\check{g} \in [\bar{g}]$$ g ˇ ∈ [ g ¯ ] with the minimal boundary condition, we have that, up to rescaling, $$\check{g} = \bar{g}$$ g ˇ = g ¯ . Here, $$g_S$$ g S and $$[\bar{g}]$$ [ g ¯ ] denote respectively the standard round metric on the $$(n-1)$$ ( n - 1 ) -sphere $$S^{n-1}$$ S n - 1 and the conformal class of $$\bar{g}$$ g ¯ . Moreover, if we assume that $$\partial W \subset (W, \bar{g})$$ ∂ W ⊂ ( W , g ¯ ) is totally geodesic, we also show a Gursky-Han type inequality for the relative Yamabe constant of $$(W, \partial W, [\bar{g}])$$ ( W , ∂ W , [ g ¯ ] ) .


1997 ◽  
Vol 20 (2) ◽  
pp. 397-402 ◽  
Author(s):  
E. M. E. Zayed

The spectral functionΘ(t)=∑i=1∞exp(−tλj), where{λj}j=1∞are the eigenvalues of the negative Laplace-Beltrami operator−Δ, is studied for a compact Riemannian manifoldΩof dimension “k” with a smooth boundary∂Ω, where a finite number of piecewise impedance boundary conditions(∂∂ni+γi)u=0on the parts∂Ωi(i=1,…,m)of the boundary∂Ωcan be considered, such that∂Ω=∪i=1m∂Ωi, andγi(i=1,…,m)are assumed to be smooth functions which are not strictly positive.


2020 ◽  
Vol 20 (1) ◽  
pp. 77-93 ◽  
Author(s):  
Zhijun Zhang

AbstractThis paper is concerned with the existence, uniqueness and asymptotic behavior of classical solutions to two classes of models {-\triangle u\pm\lambda\frac{|\nabla u|^{2}}{u^{\beta}}=b(x)u^{-\alpha}}, {u>0}, {x\in\Omega}, {u|_{\partial\Omega}=0}, where Ω is a bounded domain with smooth boundary in {\mathbb{R}^{N}}, {\lambda>0}, {\beta>0}, {\alpha>-1}, and {b\in C^{\nu}_{\mathrm{loc}}(\Omega)} for some {\nu\in(0,1)}, and b is positive in Ω but may be vanishing or singular on {\partial\Omega}. Our approach is largely based on nonlinear transformations and the construction of suitable sub- and super-solutions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Belhadj Karim ◽  
Abdellah Zerouali ◽  
Omar Chakrone

AbstractUsing the Ljusternik–Schnirelmann principle and a new variational technique, we prove that the following Steklov eigenvalue problem has infinitely many positive eigenvalue sequences:\left\{\begin{aligned} &\displaystyle\operatorname{div}(a(x,\nabla u))=0&&% \displaystyle\phantom{}\text{in }\Omega,\\ &\displaystyle a(x,\nabla u)\cdot\nu=\lambda m(x)|u|^{p(x)-2}u&&\displaystyle% \phantom{}\text{on }\partial\Omega,\end{aligned}\right.where {\Omega\subset\mathbb{R}^{N}}{(N\geq 2)} is a bounded domain of smooth boundary {\partial\Omega} and ν is the outward unit normal vector on {\partial\Omega}. The functions {m\in L^{\infty}(\partial\Omega)}, {p\colon\overline{\Omega}\mapsto\mathbb{R}} and {a\colon\overline{\Omega}\times\mathbb{R}^{N}\mapsto\mathbb{R}^{N}} satisfy appropriate conditions.


2012 ◽  
Vol 164 (5) ◽  
pp. 682-708 ◽  
Author(s):  
Christopher D. Sinclair ◽  
Maxim L. Yattselev
Keyword(s):  

2012 ◽  
Vol 31 (2) ◽  
pp. 89 ◽  
Author(s):  
Luis Manuel Cruz-Orive

It is shown that, for a three dimensional particle  (namely an arbitrary compact domain with piecewise smooth boundary in R^3) the mean wedge volume defined on a given pivotal section is equal to the average nucleator estimator of the particle volume defined on that section. Further, if the particle is convex and it contains the pivotal point, then the flower area of a given pivotal section equals the average surfactor estimator defined on that section. These results are intended to throw some light on the standing conjecture that the functional defined on a pivotal section according to the invariator has a unique general expression. As a plus, the former result leads to a computational formula for the mean wedge volume of a convex polygon which is much simpler than the one published recently, and it is valid whether the fixed pivotal point is interior or exterior to the particle.


Sign in / Sign up

Export Citation Format

Share Document