scholarly journals Experimental research of thermohydraulic dispatcher operating regimes

2019 ◽  
Vol 12 (2) ◽  
pp. 106-112 ◽  
Author(s):  
D. O. Romanov ◽  
Y. V. Yavorovsky ◽  
V. V. Smirnov

Heat carrier transportation in district heating (DH) systems is an issue of a significant energy saving potential. This potential can be achieved by applying a thermohydraulic dispatcher (THD) into DH systems. THD is a vertical or horizontal shunt pipe of a large diameter with relatively low hydraulic resistance in comparison with that of connected circuits. Installation of THD along with distributed variable speed pumps in DH systems can lead to reducing or even eliminating electric energy losses caused by throttling of redundant hydraulic head. It also leads to decreasing pressure in heat supply network which improves reliability of the network. But the opportunity of further rational implementation of THD in DH systems is limited because of insufficient amount of theoretical and experimental research. This paper is concerned with the experimental research of THD operating regimes. Already known aspects of THD operation were checked and proved. New dependencies were obtained for bypassing regime and for mixing regime of THD. Besides, different types of the primary circuit connection to THD were considered: connection for non-condensing boilers and connection for condensing boilers. Simplified models describing bypassing and mixing regimes of THD were proposed. It is possible to estimate return temperature of primary circuit with the help of the bypassing regime model with an error less than 1%. At the same time the mixing regime model is suitable for finding supply temperatures of primary circuits with an error less than 2%.The results of this paper can be used for further research and development of DH systems with THD. Such systems could be traditional as well as prospective ones (low temperature and pressure DH systems). 

Energy Policy ◽  
2009 ◽  
Vol 37 (11) ◽  
pp. 4737-4742 ◽  
Author(s):  
F.G. Arroyo-Cabañas ◽  
J.E. Aguillón-Martínez ◽  
J.J. Ambríz-García ◽  
G. Canizal

Author(s):  
Francesco Ippolito ◽  
Mauro Venturini

This paper presents the development of a simulation tool for modeling the transient behavior of micro-CHP (combined heat and power) systems, equipped with both thermal and electric storage units and connected with both electric and district heating grid (DHG). The prime mover (PM) considered in this paper is an internal combustion reciprocating engine (ICE), which is currently the only well-established micro-CHP technology. Different users, characterized by different demands of electric and thermal energy, both in terms of absolute value and electric-to-thermal energy ratio, are analyzed in this paper. Both summer and winter hourly trends of electric and thermal energy demand are simulated by using literature data. The results present a comprehensive energy analysis of all scenarios on a daily basis, in terms of both user demand met and energy share among system components. The transient response of the PM and the thermal energy storage (TES) is also analyzed for the two scenarios with the lowest and highest daily energy demand, together with the trend over time of the state of charge of both thermal and electric energy storage (EES).


2017 ◽  
Vol 26 (3) ◽  
Author(s):  
Mari Rajaniemi ◽  
Tapani Jokiniemi ◽  
Laura Alakukku ◽  
Jukka Ahokas

The aim of this study was to examine the electric energy consumption of milking process on dairy farms and to evaluate the methods to improve the energy efficiency. The electricity consumption of the milking process was measured on three dairy farms in Southern Finland, and it varied between 37–62 Wh kg-1 milk.  The largest energy saving potential was identified in milk cooling and the heating of cleaning water. Even simple methods, such as placing the condenser of the refrigeration system outside, may reduce the energy consumption of milk cooling by 30%. Efficient milk pre-cooling can reduce the energy consumption of the whole milking process by more than 25%. Even larger energy savings are possible with a sophisticated milk cooling – water heating systems. It was concluded that there is a significant potential to reduce the energy consumption and energy costs of the milking process, and thus to improve the profitability and sustainability of the sector at the same time.


Author(s):  
Francesco Ippolito ◽  
Mauro Venturini

This paper presents the development of a simulation tool for modeling the transient behavior of micro-CHP systems, equipped with both thermal and electric storage units and connected with both electric and district heating grid. The prime mover considered in this paper is an internal combustion reciprocating engine, which is currently the only well-established micro-CHP technology. Different users, characterized by different demands of electric and thermal energy, both in terms of absolute value and electric-to-thermal energy ratio, are analyzed in this paper. Both summer and winter hourly trends of electric and thermal energy demand are simulated by using literature data. The results present a comprehensive energy analysis of all scenarios on a daily basis, in terms of both user demand met and energy share among system components. The transient response of the prime mover and the thermal energy storage is also analyzed for the two scenarios with the lowest and highest daily energy demand, together with the trend over time of the state of charge of both thermal and electric energy storage.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5456
Author(s):  
Antonio Rosato ◽  
Antonio Ciervo ◽  
Giovanni Ciampi ◽  
Michelangelo Scorpio ◽  
Sergio Sibilio

A micro-scale district heating network based on the operation of solar thermal collectors coupled to a long-term borehole thermal storage is modeled, simulated and investigated over a period of five years. The plant is devoted to covering the domestic hot water and space heating demands of a district composed of six typical residential buildings located in Naples (southern Italy). Three alternative natural gas-fueled back-up auxiliary systems (condensing boiler and two different technologies of micro-cogeneration) aiming at balancing the solar energy intermittency are investigated. The utilization of electric storages in combination with the cogeneration systems is also considered with the aim of improving the self-consumption of cogenerated electric energy; heat recovery from the distribution circuit is also evaluated to pre-heat the mains water for domestic hot water production. The performances of the proposed plant schemes are contrasted with those of a typical Italian decentralized heating plant (based on the utilization of natural gas-fueled non-condensing boilers). The comparison highlighted that the proposed configurations can decrease the primary energy consumption (up to 11.3%), the equivalent emissions of carbon dioxide (up to 11.3%), and the operation costs (up to 14.3%), together with an acceptable simple pay-back period (about 4.4 years).


2014 ◽  
Vol 656 ◽  
pp. 242-251 ◽  
Author(s):  
Teodora Melania Şoimoşan ◽  
Raluca Andreea Felseghi ◽  
Călin Ovidiu Safirescu ◽  
Georgiana Dorina Iacob

The present paper approaches the premises referring to the typologies and operating regimes that characterize district heating systems and that are necessary to efficiently integrate, in the district heating network, the systems that use solar energy to produce thermal energy in a decentralized way. A set of operating simulations were carried on the targeted thermal system during a whole year, for different hydraulic feed-in connection of the solar system and different operating temperatures of the heating agent in the thermal network, in order to quantitatively and qualitatively evaluate the impact of converting a classical thermal system in a hybrid solar-thermal system.


Author(s):  
Vladimir K. Averyanov ◽  
Aleksey A. Melezhik ◽  
Alexander S. Gorshkov ◽  
Yury V. Yuferev

The paper defines the main factors of the smart energy systems that influence on the district heating. Noted increase in the regulatory impact of electric energy system on the district heating and increase in roles of the distribution and consumption of thermal energy. Urban population and other consumers of energy become equal partners of the utilities and acquire the status of "active" consumers. The heating supply companies need to develop a new model of management of heating regimes with dynamic synchronization with energy system and "active" consumers. One of the most important conditions of the achievement of the cost reduction, reliability and quality increase in community facilities is active consumer's behavior.


2018 ◽  
Vol 284 ◽  
pp. 1385-1389 ◽  
Author(s):  
Y.V. Yavorovsky ◽  
D.O. Romanov ◽  
V.G. Khromchenkov

This article is concerned with the research of thermos-hydraulic separators and dispatchers (THD) in heat supply systems and focuses on the experimental part of the research. Тhe experiments allowed to develop the ANSYS Fluent model in terms of accuracy and veracity. The developed model allows to predict operation of THD in different regimes. The results may be used for designing the systems with THD. Such systems may be low temperature district heating systems, where THD allow to hydraulically separate the circuits from each other.


Sign in / Sign up

Export Citation Format

Share Document