scholarly journals Versatile Native Grasses and a Turf-Alternative Groundcover for the Arid Southwest United States

2021 ◽  
Vol 39 (4) ◽  
pp. 160-167
Author(s):  
Worku Burayu ◽  
Kai Umeda

Abstract Water use limitations offers new opportunities for utilization of low-input native grasses and groundcovers for the landscapes of southwest USA. Two field studies were conducted with eleven plant species for two years in Scottsdale and Sun City West, AZ to evaluate rate of emergence, ground surface coverage, plant height, and overall plant quality. In the laboratory, Eragrostis tef at 86% and Eragrostis intermedia at 85% were showing higher percentage of germination compared to other species. Within eight weeks, ten species exhibited an average of 81% emergence at Scottsdale while nine species showed only 58% emergence at Sun City West. Sporobolus cryptandrus grew to greater than 76 cm (30 in) in height while kurapia (Lippia nodiflora) grew to about 5 cm (2 in). The performances of the groundcover kurapia and the native grasses tested demonstrated excellent potential in the low desert southwest U.S., with low rates of water use, applying fertilizer only at planting, and less frequent mowing requirements. Lippia nodiflora, Sporobolus airoides, Bouteloua gracilis, Eragrostis intermedia, and Muhlenbergia asperifolia remained green throughout the year when mowed twice a year. Lippia nodiflora, Hilaria rigida, and Bouteloua gracilis exhibited the highest ground surface coverage and uniformity in growth. Index words: groundcover, landscape, low input, native grasses, plant species. Species used in this study: Blue grama, Bouteloua gracilis (Kunth) Lag. ex Griffiths; bufflograss, Buchloe dactyloides (Nutt.) Engelm.; plains lovegrass, Eragrostis intermedia A.S. Hitchc.; teff, Eragrostis tef (Zucc) Trotter; big galleta, Hilaria rigida (Thurb); Kurapia, Lippia nodiflora (L.) Greene; alkali muhly, Muhlenbergia asperifolia (Nees & Meyen ex Trin.) Parodi; alkali sacaton, Sporobolus airoides (Torr.) Torr.; spike dropseed, Sporobolus contractus A.S. Hitchc.; sand dropseed, Sporobolus cryptandrus (Torr.) A. Gray; and desert zinnia, Zinnia acerosa (DC.) A. Gray.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1047
Author(s):  
Gianni Bellocchi ◽  
Catherine Picon-Cochard

Associated with livestock farming, grasslands with a high diversity of plant species are at the core of low-input fodder production worldwide [...]


Author(s):  
Daniel G. Milchunas ◽  
William K. Lauenroth

Although livestock are the most obvious consumers on the shortgrass steppe, they are certainly not the only consumers. However, livestock may influence the other consumers in a number of different ways. They may directly compete for food resources with other aboveground herbivores. There is behavioral interference between livestock and some species of wildlife (Roberts and Becker, 1982), but not others (Austin and Urness, 1986). The removal of biomass by livestock alters canopy structure (physiognomy) and influences microclimate. Bird, small-mammal, and insect species can be variously sensitive to these structural alterations (Brown, 1973; Cody, 1985; MacArthur, 1965; Morris, 1973; Rosenzweig et al., 1975; Wiens, 1969). There are both short- and long-term effects of grazing on plant community species composition, primary production, and plant tissue quality. Belowground consumers can also be affected by the effects of grazing on soil water infiltration, nutrient cycling, carbon allocation patterns of plants, litter accumulation, and soil temperature. The overall effects of livestock on a particular component of the native fauna can be negative or can be positive through facilitative relationships (Gordon, 1988). In this chapter we assess the effects of cattle grazing on other above- and belowground consumers, on the diversity and relative sensitivity of these groups of organisms, and on their trophic structure. We first present some brief background information on plant communities of the shortgrass steppe and on the long-term grazing treatments in which many of the studies reported herein were conducted. Details on the plant communities are presented by Lauenroth in chapter 5 (this volume), grazing effects on plant communities by Milchunas et al. in chapter 16 (this volume); and grazing effects on nutrient distributions and cycling by Burke et al. in chapter 13 (this volume). The physiognomy of the shortgrass steppe is indicated in its name. The dominant grasses (Bouteloua gracilis and Buchloë dactyloides), forb (Sphaeralcea coccinea), and carex (Carex eleocharis) have the majority of their leaf biomass within 10 cm of the ground surface. A number of less abundant midheight grasses and dwarf shrubs are sparsely interspersed among the short vegetation, but usually much of their biomass is within 25 cm of the g round. Basal cover of vegetation typically totals 25% to 35%, and is greater in long-term grazed than in ungrazed grassland. Bare ground (more frequent on grazed sites) and litter-covered ground (more frequent on ungrazed sites) comprise the remainder of the soil surface (Milchunas et al., 1989).


2006 ◽  
Vol 288 (1-2) ◽  
pp. 249-261 ◽  
Author(s):  
H. J. De Boeck ◽  
C. M. H. M. Lemmens ◽  
H. Bossuyt ◽  
S. Malchair ◽  
M. Carnol ◽  
...  

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 862C-862
Author(s):  
Erika N. Kocsis ◽  
Ronald F. Hooks ◽  
James N. McCrimmon

The use of grasses native to New Mexico are preferred for revegetating Albuquerque's sewage sludge disposal site. A greenhouse study was conducted to determine the most appropriate grass species that could be used in revegetation. Nine grasses grown in soil collected at Albuquerque's sludge disposal site were compared based on germination measurements, including plant height and density. Final shoot and root weights also were taken for comparison. Plant tissue was analyzed for the accumulation of metals and salts. With 200 ml of water applied weekly, plant height was greatest in spike dropseed (Sporobolus contractus A. S. Hitchc.) at 33.86 cm; plant density was greatest in alkali sacaton (Sporobolus airoides Torr.). Results indicate the grasses that have the best potential for use in revegetation are blue grama [Bouteloua gracilis (H.B.K.) Lag. ex Griffiths], sideoats grama [Bouteloua curtipendula (Michx.) Torr.], and alkali sacaton.


2014 ◽  
Vol 28 (8) ◽  
pp. 908-916 ◽  
Author(s):  
Barbara Plancot ◽  
Gaëtan Vanier ◽  
Florian Maire ◽  
Muriel Bardor ◽  
Patrice Lerouge ◽  
...  

2015 ◽  
Vol 154 (6) ◽  
pp. 1015-1025 ◽  
Author(s):  
P. P. NHẪN ◽  
L. V. HÒA ◽  
C. N. QUÍ ◽  
N. X. HUY ◽  
T. P. HỮU ◽  
...  

SUMMARYRice production in the Mekong Delta, Vietnam is threatened by future water scarcity caused by changing rainfall patterns and increasing irrigation costs. To improve resilience of the triple rice farming system to future climate-related stresses, profitability needs to be increased through water use efficiency, fertilizer management and planting methods.During four cropping seasons in 2011–13, alternate wetting and drying (AWD) irrigation was applied in the triple rice production area within An Giang Province, Vietnam. An issue with the application of AWD is the prevalence of acid sulphate soils in the Mekong Delta. Three types of irrigation management were tested; continuously flooded (CF) where the water in the paddy was maintained at 5 cm; AWD where the water level was allowed to fall to 15 cm below the ground surface, at which point the field was irrigated until the water level was at 1 cm above the ground surface (designated −15 cm); AWD where the water level was allowed to fall to 30 cm below the ground surface before irrigation until the water level was at 1 cm above the ground surface (designated −30 cm). Two further experiments were also undertaken which examined the planting method (transplant v. direct sowing) and phosphorus rate on rice yield. There was no effect on yield caused by P fertilizer rate and irrigation management in any year, and there was no significant effect on soil pH or salinity caused by irrigation management. Overall net profitability was greatest for the AWD treatments because of the reduction in pumping and labour costs in the dry season. Transplanted rice improved yields, but the labour cost reduced overall profitability. The study shows that AWD (−15 cm) can be safely applied in acid sulphate soil areas within the triple rice areas of An Giang Mekong Delta and saved at least 0·27 of total irrigated water quantity used during three of the six cropping seasons. The increased profitability of the AWD rice production system will help to improve the resilience of triple rice cropping systems to future water scarcity.


2012 ◽  
Vol 196 (2) ◽  
pp. 489-496 ◽  
Author(s):  
Cristina Moreno‐Gutiérrez ◽  
Todd E. Dawson ◽  
Emilio Nicolás ◽  
José Ignacio Querejeta

2001 ◽  
Vol 15 (5) ◽  
pp. 605-614 ◽  
Author(s):  
J. T. Tsialtas ◽  
L. L. Handley ◽  
M. T. Kassioumi ◽  
D. S. Veresoglou ◽  
A. A. Gagianas

Sign in / Sign up

Export Citation Format

Share Document