scholarly journals Six Reasons to Discard Wave Particle Duality: Thereby Opening New Territory for Young Scientists to Explore

2021 ◽  
Vol 18 ◽  
pp. 1-29
Author(s):  
Jeffrey Boyd

Wave particle duality is a cornerstone of quantum chemistry and quantum mechanics (QM). But there are experiments it cannot explain, such as a neutron interferometer experiment. If QM uses Ψ as its wavefunction, several experiments suggest that nature uses -Ψ instead. The difference between -Ψ and +Ψ is that they describe entirely different pictures of how nature is organized. For example, with -Ψ quantum particles follow waves backwards, which is incompatible with wave-particle-duality, obviously. We call the -Ψ proposal the Theory of Elementary Waves (TEW). It unlocks opportunities for young scientists with no budget to conduct the basic research for a new, unexplored science. This is a dream come true for young scientists: the discovery of uncharted territory. We show how TEW explains the double slit, Pfleegor Mandel and Davisson Germer experiments, Feynman diagrams and the Bell test experiments. We provide innovative research designs for which -Ψ and +Ψ would predict divergent outcomes. What makes QM so accurate is its probability predictions. But Born’s law would yield the same probabilities if it were changed from P = |+Ψ |2 to P = |-Ψ |2. This article is accompanied by a lively YouTube video, “6 reasons to discard wave particle duality.”

2015 ◽  
Vol 7 (3) ◽  
pp. 1916-1922
Author(s):  
Jeffrey H Boyd

Wave particle duality is a mistake. Another option was neither conceived nor debated, which is a better foundation for quantum mechanics. The Theory of Elementary Waves (TEW) is based on the idea that particles follow zero energy waves backwards. A particle cannot be identical with its wave if they travel in opposite directions. TEW is the only form of local realism that is consistent with the results of the experiment by Aspect, Dalibard and Roger (1982). Here we show that 1. although QM teaches that complementarity in a double slit experiment cannot be logically explained, TEW explains it logically, without wave function collapse, and 2. gives an unconventional explanation of the Davisson Germer experiment. 3. There is empirical evidence for countervailing waves and particles and 4. zero energy waves. 5. TEW clarifies our understanding of probability amplitudes and supports quantum math. 6. There is an untested experiment for which TEW and wave particle duality predict different outcomes. If TEW is valid, then wave particle duality is not necessary for quantum math, which is the most accurate and productive science ever. With a more solid foundation, new vistas of science open, such as the study of elementary waves.


Philosophy ◽  
2014 ◽  
Author(s):  
Décio Krause ◽  
Jonas R. B. Arenhart

Traditionally, the problem of identity is closely associated with the problem of individuality: What is it that makes something being what it is? Approaches to the problem may be classified into two classes: reductionism and transcendental identity. The first group tries to reduce identity to some qualitative feature of the entities dealt with, while the second either grounds identity on some feature other than qualitative properties or else take it to be primitive. The debate is generally centred on the validity of the Principle of the Identity of Indiscernibles (PII), which states that qualitative indiscernibility amounts to numerical identity. If PII is valid, then reductionism concerning identity is at least viable; if PII is invalid, then reductionism seems less plausible and some form of transcendental identity seems required. It is common to say that objects in classical mechanics are individuals. This fact is exhibited by postulating that physical objects obey Maxwell-Boltzmann statistics; if we have containers A and B to accommodate two objects a and b, there are four equiprobable situations: (1) both objects in A, (2) both in B, (3) a in A and b in B, and finally (4) a in B and b in A. Since situations (3) and (4) differ, there may be something that makes the difference—a transcendental individuality or some quality. In quantum mechanics, assuming that we have two containers A and B to accommodate objects a and b, there are just three equiprobable situations for bosons: (1) both objects in A, (2) both in B, (3) one object in A and one in B. It makes no sense to say that it is a or b that is in A: Switching them makes no difference. For fermions we have only one possibility due to the exclusion principle: (1) one object in A and one in B. Again, switching them makes no difference whatsoever. The dispute in quantum mechanics concerns non-individuality on the one side and individuality (be it reductionism or transcendental individuality) on the other. That distinction was grounded on the fact that quantum particles may be qualitatively indiscernible, and, as the statistics show, permutations are unobservable. The actual debate concerns whether some form of reductionism may survive in quantum mechanics or whether some form of transcendental identity should be adopted on the one hand and whether non-individuality is a viable option. Furthermore, a third option, Ontic Structural Realism (OSR), proposes that we transcend the debate and choose a metaphysics of structures and relations, leaving the controversial topic individuals × non-individuals behind.


2013 ◽  
Vol 11 (08) ◽  
pp. 1330002 ◽  
Author(s):  
JOSEPH M. RENES

Complementarity is one of the central mysteries of quantum mechanics, dramatically illustrated by the wave-particle duality in Young's double-slit experiment, and famously regarded by Feynman as "impossible, absolutely impossible to describe classically, [and] which has in it the heart of quantum mechanics" (emphasis original).1 The overarching goal of this thesis is to demonstrate that complementarity is also at the heart of quantum information theory, that it allows us to make (some) sense of just what information "quantum information" refers to, and that it is useful in understanding and constructing quantum information processing protocols.


Author(s):  
M. Suhail Zubairy

One of the earliest and most important tenets of quantum mechanics is the wave-particle duality: light behaves sometimes like a wave and at other times as particle and similarly an electron can also behave both like a particle and as a wave. When the formal laws of quantum mechanics are formulated, the central quantity that describes the particles is the wave function. This points to the need for a good understanding of the properties of the waves. This chapter introduces the concepts and most essential applications that are required to follow the discussion of quantum mechanical laws and systems. The basic characteristics of the waves, such as the superposition principle are presented, and the interference and the diffraction phenomena are discussed. The Young’s double slit experiment in analysed and the formation of interference pattern is explicitly shown. The Rayleigh criterion for the microscopic resolution is also derived.


2019 ◽  
Vol 34 (18) ◽  
pp. 1950139 ◽  
Author(s):  
Jaume Giné

The double-slit experiment is a demonstration of wave-particle duality and one of the most fundamental experiments that help us understand the nature of quantum mechanics. In this work, we give a new explanation of this experiment in terms of the uncertainty principle and vacuum fluctuations. This explanation allows one to understand why the electron interferes with itself when being shot through the double-slit.


2021 ◽  
Author(s):  
Hui Peng

Abstract Young’s double slit experiments, which represent the mystery of quantum mechanics, have been interpreted by quantum probability waves and de Broglie-Bohm’s trajectory/pilot waves. To study in detail, the double slit experiments are extended to the cross double slit experiments. We argue that an interpretation must be able to explain all of the double slit and cross double slit experiments consistently. To test the interpretations, the comprehensive double slit experiments have been performed, which challenge both the wave interpretation and the trajectory interpretation. The cross double slit experiments and comprehensive double slit experiments provide a new tool for studying the mystery of double slit, wave-particle duality, complementarity principle, wave theory and trajectory theory. In this article, we review the cross double slit experiments and comprehensive double slit experiments, and report new experiments.


2015 ◽  
Vol 10 (2) ◽  
pp. 2692-2695
Author(s):  
Bhekuzulu Khumalo

Heat has often been described as part of the energy transfer process. Information theory says everything is information. If everything is information then what type of information is heat, this question can be settled by the double slit experiment, but we must know what we are looking for. 


Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


2011 ◽  
Vol 20 (05) ◽  
pp. 729-743 ◽  
Author(s):  
JOÃO PAULO M. PITELLI ◽  
PATRICIO S. LETELIER

We review the mathematical framework necessary to understand the physical content of quantum singularities in static spacetimes. We present many examples of classical singular spacetimes and study their singularities by using wave packets satisfying Klein–Gordon and Dirac equations. We show that in many cases the classical singularities are excluded when tested by quantum particles but unfortunately there are other cases where the singularities remain from the quantum mechanical point of view. When it is possible we also find, for spacetimes where quantum mechanics does not exclude the singularities, the boundary conditions necessary to turn the spatial portion of the wave operator to be self-adjoint and emphasize their importance to the interpretation of quantum singularities.


Sign in / Sign up

Export Citation Format

Share Document