Evaluation of Toyserkan City's Water Contamination, due to The Existence of Radon, and Estimation of The Annual Effective Dose

2005 ◽  
Vol 1 (1) ◽  
pp. 5-12
Author(s):  
Hamid Reza Samadi

The gas of 222Rn is one of the natural radioactivesources which is the decay product of 226Ra from 238U decay chain. Based on the latest information presented bythe United Nations Scientific committee in the field of the effects of atomic radiations, the respiration of Radon and its daughters (Plutonium, Bismuth and Lead), are one of the most important factors in human radiation inhalation, since Radon and its daughters account for approximately 1.2 msv of the total of 2.4 msv (mili Sievert) annual effective dose of natural radioactive sources produced. The fluctuation in the levels of Radon resolved in water, due to the hazards caused by the emitted radiations, is considerable; because studies show that long-term exposure to Radon increases the chances of lung cancer. The amount of radon in underground waters is more than that of surface waters. If water is exposed to free air, especially when it’s mixed as well, a considerable amount of its radon content is released. In this paper, Radon concentration (Bq/L) in waters of the wells and springs located in Toyserkan, is measured using Lucas chamber technique by means of a light weighted and transportable machine namely PRASSI (SFLENAmod5s). The results showed that the radon density in four measured samples in the waters of this region exceed 10 Bq/L, the allowable amount determined by the US Environmental Protection Agency (USEPA). For the cases where the concentration is high, is it proposed that drinkable water be preserved in open pools or at least waterfalls be used in order to agitate the water to release itsradon content. It is better to install a system for settling and exposing the water to air so that Radon and its decay products are dispersed and the contamination problem is solved.

2020 ◽  
Vol 225 ◽  
pp. 06012
Author(s):  
Dorota Flamíková ◽  
Vladimír Nečas

The deep geological repository system provides long-term protection against the undesirable effects of ionizing radiation on the population and the environment. An important part of the long-term safety strategy is development of a monitoring program that collects information about the behaviour of the deep geological repository throughout its whole lifetime. A simplified model of the disposal system, geosphere, and biosphere was developed using the GoldSim simulation tool to demonstrate the behaviour of the hypothetical deep geological repository located in crystalline rocks. Also an initial model of the reference biosphere was created based on the scenario of an agricultural habitation (normal evolution scenario) and it was developed based on the recommendations provided in the BIOMASS methodology. After a significant period of time, disposal containers will be degraded and evolution changes in the repository system will occur. Several important parameters appear in the annual effective dose calculation for an individual from critical exposure group within the reference biosphere model. One of them are, for example, distribution coefficients and so-called translocation factors that define the transported rate of released radionuclides into the environment. This paper provides a view into the selected part of the deep geological repository through the data obtained by monitoring during the selected period of time. Simulations describing changes in the repository system. The aim of this contribution is to evaluate the impact of selected changes on the annual effective dose for an adult individual from a critical exposure group while it is assumed, that the respondent consumes contaminated crops and animal products. This model includes various biosphere components and multiple exposure pathways such as inhalation, ingestion and external exposure.


2020 ◽  
Vol 191 (2) ◽  
pp. 188-191
Author(s):  
Petr P S Otahal ◽  
Ivo Burian ◽  
Eliska Fialova ◽  
Josef Vosahlik

Abstract Measurements of activity concentration of radon gas and radon decay products were carried out in several workplaces including schools, radium spas, swimming pools, water treatment plants, caves and former mines. Based on these measurements, annual effective doses to workers were estimated and values of the equilibrium factor, F, were calculated. This paper describes the different approaches used to estimate the annual effective dose based on the dose coefficients recommended by the International Commission on Radiological Protection. Using the measured F values as opposed to the default F value of 0.4 changed the doses by about 5–95% depending mainly upon the ventilation conditions of the workplace.


Subject The copper market. Significance The copper price has picked up by nearly 9% this year after weakening unexpectedly through 2018, losing 17.5%. Unusually, the slide was accompanied by metal inventories dropping steadily on the London Metal Exchange, Comex and Shanghai Metals Exchange. Stocks peaked at 900 kilotonnes (kt) in March 2018 before plummeting by 65% to start the year at the lowest since 2014. This rare combination of falling inventories and weakening prices has yet to find a viable explanation. Impacts Zambian import duties on concentrate has prompted 366 kt of capacity to be shutdown, reducing supply on the market. Boosting the outlook for US output, the US Environmental Protection Agency has approved Hudbay’s 112-kt-per-year Rosemont mine in Arizona. Chilean miner Codelco is spending 4.9 billion dollars to mine underground at Chuquicamata, aiming to extend operations by 40 years. Indonesia, the ninth largest copper producer, is to redirect output towards local smelters; it has cut annual export quotas by 25-75%.


Author(s):  
Kate Li ◽  
Karin Ricker ◽  
Feng C. Tsai ◽  
ChingYi J. Hsieh ◽  
Gwendolyn Osborne ◽  
...  

Many nitrosamines are potent carcinogens, with more than 30 listed under California’s Proposition 65. Recently, nitrosamine contamination of commonly used drugs for treatment of hypertension, heartburn, and type 2 diabetes has prompted numerous Food and Drug Administration (FDA) recalls in the US. These contaminants include the carcinogens NDMA (N-nitrosodimethylamine) and NDEA (N-nitrosodiethylamine) and the animal tumorigen NMBA (N-nitroso-N-methyl-4-aminobutyric acid). NMBA and NDEA are metabolically and/or structurally related to NDMA, an N-nitrosomethyl-n-alkylamine (NMA), and 12 other carcinogenic NMAs. These nitrosamines exhibit common genotoxic and tumorigenic activities, with shared target tumor sites amongst chemicals and within a given laboratory animal species. We use the drug valsartan as a case study to estimate the additional cancer risks associated with NDMA and NDEA contamination, based on nitrosamine levels reported by the US FDA, cancer potencies developed by California’s Proposition 65 program and the US Environmental Protection Agency (EPA), and specific exposure scenarios. These estimates suggest that nitrosamine contamination in drugs that are used long-term can increase cancer risks and pose a serious concern to public health.


2020 ◽  
Vol 4 (4) ◽  
pp. 343-349
Author(s):  
D.S. Ibrayeva ◽  
M.N. Aumalikova ◽  
K.B. Ilbekova ◽  
M.M. Bakhtin ◽  
P.K. Kazymbet

Radon is a noble gas that is one of the natural radioactive decay products of radium resulting from the disintegration of uranium. Humans are exposed to sources of natural radiation activity, being radon and its progeny breathing air responsible for more than 50% of the annual dose received from natural radiation. The aim of this study was to determine the radon concentration in the air in settlements’ dwellings and social objects and calculate the annual effective dose of population from radon on the territory mining activities in Stepnogorsk area. The study has shown that activity concentrations of indoor radon in the buildings ranged from 8 to 870 Bq · m−3 in Aqsu, 3-540 Bq · m−3 in Kvartsitka located close to former gold mining sites. The Einh corresponding to the activity concentrations ranged from 1-27 mSv · y−1 received by the settlements’ public. The highest value of Einh in Aqsu School reaches up to 68 mSv · y−1 received by the critical group of public was found at the territory of former mining the Stepnogorsk area. The results of this study show significant radiation hazards in Aqsu School which located at the territory of former mining site, and there is evidence of radon health risk to the members of the public.


2020 ◽  
Vol 65 (3) ◽  
pp. 45-52
Author(s):  
A. Menyajlo ◽  
V. Kashcheev ◽  
E. Pryakhin ◽  
M. Maksyutov ◽  
K. Tumanov ◽  
...  

Purpose: Calculations of radiation detriment to the population currently living (in 2020) in the territories of Russia contaminated with 137Cs after the Chernobyl accident in 1986. Material and methods: Radiation detriment was calculated in two ways: according to the original ICRP method, and approximate calculation as the product of the nominal risk factor of RSS-99/2009 by the effective dose (nominal radiation detriment). For ICRP calculations, equivalent doses were estimated using the dose coefficients of the US Environmental Protection Agency (EPA). The number of the studied population at the beginning of 2020 was 142676 people, 65205 men and 77471 women. This is mainly the population of the Bryansk region and Tula region, 85.5 % and 10 % of the total population, respectively. The average accumulated effective dose of the population was 30.6 mSv, and the maximum individual accumulated dose was 707 mSv. Results: In 2020, for men at the age of 44 and for women at the age of 55, the nominal radiation detriment is approximately equal to the value of radiation detriment calculated using the ICRP method. At the same time, the nominal detriment is significantly (up to 2.3 times) underestimated for younger and overestimated for older ages. In 2020, the critical population groups with the highest accumulated doses and maximum radiation detriment are men aged 34 and women aged 35. For these population groups, the average accumulated effective doses were 35.3 mSv and 39.2 mSv, and the average radiation detriment was 2.6×10–3 and 4.2×10–3, for men and women, respectively. For 11.8 % of the population (8.3 % of men and 14.8 % of women), the individual radiation detriment calculated using the ICRP method exceeds the value of 3.5×10–3, which corresponds to the maximum increase in individual risk for the population over 70 years of exposure, established by RSS-99/2009 for normal exposure conditions. The maximum radiation detriment of 3.9×10–2 was found for a woman of the Krasnogorsky district of the Bryansk region at the age of 37 years, with an accumulated effective dose of 392 mSv. Conclusion: The results of this work can be used in preparing recommendations to health authorities on improving medical supervision of exposured citizens living in areas contaminated with radionuclides, as well as in developing regulatory documents for the provision of targeted medical care to people from high radiation risk groups using personalized medicine methods.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10331
Author(s):  
Samuel Frutos-Puerto ◽  
Eduardo Pinilla-Gil ◽  
Eva Andrade ◽  
Mário Reis ◽  
María José Madruga ◽  
...  

Radon (222Rn) and thoron (220Rn) are radioactive gases emanating from geological materials. Inhalation of these gases is closely related to an increase in the probability of lung cancer if the levels are high. The majority of studies focus on radon, and the thoron is normally ignored because of its short half-life (55.6 s). However, thoron decay products can also cause a significant increase in dose. In buildings with high radon levels, the main mechanism for entry of radon is pressure-driven flow of soil gas through cracks in the floor. Both radon and thoron can also be released from building materials to the indoor atmosphere. In this work, we study the radon and thoron exhalation and emanation properties of an extended variety of common building materials manufactured in the Iberian Peninsula (Portugal and Spain) but exported and used in all countries of the world. Radon and thoron emission from samples collected in the closed chamber was measured by an active method that uses a continuous radon/thoron monitor. The correlations between exhalation rates of these gases and their parent nuclide exhalation (radium/thorium) concentrations were examined. Finally, indoor radon and thoron and the annual effective dose were calculated from radon/thoron concentrations in the closed chamber. Zircon is the material with the highest concentration values of 226Ra and 232Th and the exhalation and emanation rates. Also in the case of zircon and some granites, the annual effective dose was higher than the annual exposure limit for the general public of 1 mSv y−1, recommended by the European regulations.


Author(s):  
Shikha Pervin ◽  
Selina Yeasmin ◽  
Jannatul Ferdous ◽  
Afia Begum

Water is the most important source of life and ground water may contain varying levels of radioactivity. So it is therefore important to measure radon concentration in ground water for public health and radiation protection. In this study, radon concentration was measured in ground water samples collected from water pumps of different locations at Dhaka city, Bangladesh. Twenty ground water samples were collected in July 2017to April 2018 for radon level measurement. Radon detector RAD7 (manufactured by Durridge Company, USA) with RAD H2O technique was used for the measurement. The highest radon concentration was found 13.00±0.70 Bq/L for the pump of sample ID GW1 and the lowest radon concentration 2.13±0.593 Bq/L for the pump of sample ID GW10.The activity concentration of radon in maximum water samples in Dhaka city was lower than the value 11.1 Bq/L recommended by United States Environmental Protection Agency (USEPA). The radon concentration was lowered from the activity concentration before storage. The highest value of annual effective dose for radon in ground water was found 0.04745 mSv/y According to recommendation of World Health Organization, the annual effective dose level for radon in drinking water is 0.1 mSv/y. These results indicate that there is no probability of health hazards for public due to presences of radon in ground water and it is safe for consumption.


Sign in / Sign up

Export Citation Format

Share Document