The Weight Reduction of Charged Capacitors, Charge-Mass Interaction, and Einstein's Unification

2015 ◽  
Vol 7 (3) ◽  
pp. 1959-1969 ◽  
Author(s):  
C. Y. Lo

The Biefeld-Brown (B-B) effect consists of two parts: 1) the initial thrust is due to the electric potential that moves the electrons to the positive post; and 2) the subsequent lift is due to the separate concentration of the positive and the negative charges. The weight reduction of a charged capacitor is due to a repulsive charge-mass interaction, which is normally cancelled by the attractive current-mass interaction. In a charged capacitor, some electrons initially moving in the orbits become statically concentrated and thus a net repulsive force is exhibited. Based on observations, it is concluded that a repulsive charge-mass interaction is proportional to the charge density square and diminishes faster than the attractive gravitational force, and that the current-mass force is perpendicular to the current. This charge-mass interaction is crucial to establish the unification of electromagnetism and gravitation. To confirm general relativity further, experimental verification of the details of this mass-charge repulsive force is recommended. Moreover, general relativity implies that the photons must include gravitational energy and this explains that experiments show that the photonic energy is equivalent to mass although the electromagnetic energy-stress tensor is traceless. In general relativity,it is crucial to understandnon-linear mathematics and that the Einstein equation has no bounded dynamic solutions. However, due to following Einstein's errors, theorists failed in understanding these and ignored experimental facts on repulsive gravitation. Since the charge-mass interaction occurs in many areas of physics, Einstein's unification is potentially another revolution in physics. Moreover, the existence of a repulsive gravitation implies the necessity of re-justifying anew the speculation of black holes.

2015 ◽  
Vol 8 (2) ◽  
pp. 2135-2147 ◽  
Author(s):  
C. Y. Lo

General relativity is incomplete since it does not include the gravitational radiation reaction force and the interaction of gravitation with charged particles. General relativity is confusing because Einstein's covariance principle is invalid in physics. Moreover, there is no bounded dynamic solution for the Einstein equation. Thus, Gullstrand is right and the 1993 Nobel Prize for Physics press release is incorrect. Moreover, awards to Christodoulou reflect the blind faith toward Einstein and accumulated errors in mathematics. Note that the Einstein equation with an electromagnetic wave source has no valid solution unless a photonic energy-stress tensor with an anti-gravitational coupling is added. Thus, the photonic energy includes gravitational energy. The existence of anti-gravity coupling implies that the energy conditions in space-time singularity theorems of Hawking and Penrose cannot be satisfied, and thus are irrelevant. Also, the positive mass theorem of Yau and Schoen is misleading, though considered as an achievement by the Fields Medal. E = mc2 is invalid for the electromagnetic energy alone. The discovery of the charge-mass interaction establishes the need for unification of electromagnetism and gravitation and would explain many puzzles. Experimental investigations for further results are important.


2015 ◽  
Vol 10 (3) ◽  
pp. 2874-2885 ◽  
Author(s):  
C. Y. Lo

There are errors in general relativity that must be rectified. As Zhou pointed out, Einstein’s covariance principle is proven to be invalid by explicit examples. Linearization is conditionally valid. Pauli's version of the equivalence principle is impossible in mathematics. Einstein's adaptation of the distance in Riemannian geometry is invalid in physics as pointed out by Whitehead. Moreover, it is inconsistent with the calculation on the bending of light, for which a Euclidean-like framework is necessary. Thus, the interpretation of the Hubble redshifts as due to receding velocities of stars is invalid. The Einstein equation has no dynamic solutions just as Gullstrand suspected. All claims on the existence of dynamic solutions for the Einstein equation are due to mistakes in non-linear mathematics. For the existence of a dynamic solution, the Einstein equation must be modified to the Lorentz-Levy-Einstein equation that have additionally a gravitational energy-stress tensor with an anti-gravity coupling. The existence of photons is a consequence of general relativity. Thus, the space-time singularity theorems of Hawking and Penrose are actually irrelevant to physics because their energy conditions cannot be satisfied. The positive mass theorem of Schoen and Yau is misleading because invalid implicit assumptions are used as Hawking and Penrose did. There are three experiments that show formula E = mc2 is invalid, and a piece of heated-up metal has reduced weight just as a charged capacitor. Thus, the weight is temperature dependent. It is found, due to the repulsive charge-mass interaction, gravity is not always attractive to mass. Since the assumption that gravity is always attractive to mass is not valid, the existence of black holes are questionable.  Because of the repulsive charge-mass interaction, the theoretical framework of general relativity must be extended to a five-dimensional relativity of Lo, Goldstein & Napier. Thus Einstein's conjecture of unification is valid. Moreover, the repulsive gravitational force from a charged capacitor is incompatible with the notion of a four-dimensional space. In Quantum theory, currently the charge-mass interaction is neglected. Thus, quantum theory is not a final theory as Einstein claims.


2015 ◽  
Vol 8 (1) ◽  
pp. 1976-1981
Author(s):  
Casey McMahon

The principle postulate of general relativity appears to be that curved space or curved spacetime is gravitational, in that mass curves the spacetime around it, and that this curved spacetime acts on mass in a manner we call gravity. Here, I use the theory of special relativity to show that curved spacetime can be non-gravitational, by showing that curve-linear space or curved spacetime can be observed without exerting a gravitational force on mass to induce motion- as well as showing gravity can be observed without spacetime curvature. This is done using the principles of special relativity in accordance with Einstein to satisfy the reader, using a gravitational equivalence model. Curved spacetime may appear to affect the apparent relative position and dimensions of a mass, as well as the relative time experienced by a mass, but it does not exert gravitational force (gravity) on mass. Thus, this paper explains why there appears to be more gravity in the universe than mass to account for it, because gravity is not the resultant of the curvature of spacetime on mass, thus the “dark matter” and “dark energy” we are looking for to explain this excess gravity doesn’t exist.


Author(s):  
Steven Carlip

This work is a short textbook on general relativity and gravitation, aimed at readers with a broad range of interests in physics, from cosmology to gravitational radiation to high energy physics to condensed matter theory. It is an introductory text, but it has also been written as a jumping-off point for readers who plan to study more specialized topics. As a textbook, it is designed to be usable in a one-quarter course (about 25 hours of instruction), and should be suitable for both graduate students and advanced undergraduates. The pedagogical approach is “physics first”: readers move very quickly to the calculation of observational predictions, and only return to the mathematical foundations after the physics is established. The book is mathematically correct—even nonspecialists need to know some differential geometry to be able to read papers—but informal. In addition to the “standard” topics covered by most introductory textbooks, it contains short introductions to more advanced topics: for instance, why field equations are second order, how to treat gravitational energy, what is required for a Hamiltonian formulation of general relativity. A concluding chapter discusses directions for further study, from mathematical relativity to experimental tests to quantum gravity.


Sign in / Sign up

Export Citation Format

Share Document