scholarly journals Effects of particle volume fraction on aging behavior of alumina particle dispersed Al-Cu-Mg alloy composite materials.

1993 ◽  
Vol 43 (9) ◽  
pp. 465-471 ◽  
Author(s):  
Susumu IKENO ◽  
Katsuhiko HORIE ◽  
Kenji MATSUDA ◽  
Yasuhiro UETANI ◽  
Hiroshi ANADA ◽  
...  
2011 ◽  
Vol 474-476 ◽  
pp. 7-10 ◽  
Author(s):  
Zhuo Chen ◽  
Zhi Xiong Huang ◽  
Ming Zhang ◽  
Min Xian Shi ◽  
Yan Qin ◽  
...  

This paper introduced a computer simulation model for composite materials which was reinforced by spherical particles. We introduced its algorithm and visualize the model with different particle volume fraction. In order to evaluate the uniformity of the particle distribution, we estimated Particle Center Density and standard deviation of minimal sphere distance.


2021 ◽  
Author(s):  
Ruifeng CAO ◽  
Taotao WANG ◽  
Yuxuan ZHANG ◽  
Hui WANG

Improved heat transfer in composites consisting of guar gel matrix and randomly distributed glass microspheres is extensively studied to predict the effective thermal conductivity of composites using the finite element method. In the study, the proper and probabilistic three-dimensional random distribution of microspheres in the continuous matrix is automatically generated by a simple and efficient random sequential adsorption algorithm which is developed by considering the correlation of three factors including particle size, number of particles, and particle volume fraction controlling the geometric configuration of random packing. Then the dependences of the effective thermal conductivity of composite materials on some important factors are investigated numerically, including the particle volume fraction, the particle spatial distribution, the number of particles, the nonuniformity of particle size, the particle dispersion morphology and the thermal conductivity contrast between particle and matrix. The related numerical results are compared with theoretical predictions and available experimental results to assess the validity of the numerical model. These results can provide good guidance for the design of advanced microsphere reinforced composite materials.


1992 ◽  
Vol 41 (469) ◽  
pp. 1526-1531
Author(s):  
Susumu IKENO ◽  
Kazuhiro KAWASHIMA ◽  
Kenji MATSUDA ◽  
Yasuhiro UETANI ◽  
Hiroshi ANADA ◽  
...  

2015 ◽  
Vol 17 (4) ◽  
pp. 1037-1055 ◽  
Author(s):  
Chiyu Xie ◽  
Jinku Wang ◽  
Dong Wang ◽  
Ning Pan ◽  
Moran Wang

AbstractThe effective thermal conductivity of composite materials with thermal contact resistance at interfaces is studied by lattice Boltzmann modeling in this work. We modified the non-dimensional partial bounce-back scheme, proposed by Han et al. [Int. J. Thermal Sci., 2008. 47: 1276-1283], to introduce a real thermal contact resistance at interfaces into the thermal lattice Boltzmann framework by re-deriving the redistribution function of heat at the phase interfaces for a corrected dimensional formulation. The modified scheme was validated in several cases with good agreement between the simulation results and the corresponding theoretical solutions. Furthermore, we predicted the effective thermal conductivities of composite materials using this method where the contact thermal resistance was not negligible, and revealed the effects of particle volume fraction, thermal contact resistance and particle size. The results in this study may provide a useful support for materials design and structure optimization.


2012 ◽  
Vol 508 ◽  
pp. 361-364 ◽  
Author(s):  
Zhuo Chen ◽  
Zhi Xiong Huang ◽  
Rong Yang Dou ◽  
Jing Dai ◽  
Min Xian Shi ◽  
...  

In this Research a Method for Computer Simulation Model of Composite Materials, which Are Reinforced by Multi-Size Particles, Is Introduced. All Particles Are Embedded in the Matrix Randomly. Composite of Different Particle Volume Fraction Were Simulated and Visualized. Statistic Results Shows that the Particles Disperse Distribution Are Uniform which Could Be Used in the Further Study of Composite.


2015 ◽  
Vol 19 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jahar Sarkar

The theoretical analyses of the double-tube gas cooler in transcritical carbon dioxide refrigeration cycle have been performed to study the performance improvement of gas cooler as well as CO2 cycle using Al2O3, TiO2, CuO and Cu nanofluids as coolants. Effects of various operating parameters (nanofluid inlet temperature and mass flow rate, CO2 pressure and particle volume fraction) are studied as well. Use of nanofluid as coolant in double-tube gas cooler of CO2 cycle improves the gas cooler effectiveness, cooling capacity and COP without penalty of pumping power. The CO2 cycle yields best performance using Al2O3-H2O as a coolant in double-tube gas cooler followed by TiO2-H2O, CuO-H2O and Cu-H2O. The maximum cooling COP improvement of transcritical CO2 cycle for Al2O3-H2O is 25.4%, whereas that for TiO2-H2O is 23.8%, for CuO-H2O is 20.2% and for Cu-H2O is 16.2% for the given ranges of study. Study shows that the nanofluid may effectively use as coolant in double-tube gas cooler to improve the performance of transcritical CO2 refrigeration cycle.


Sign in / Sign up

Export Citation Format

Share Document