A Comparison of Overarm Throwing with the Dominant and Nondominant Arm in Experienced Team Handball Players

2009 ◽  
Vol 109 (1) ◽  
pp. 315-326 ◽  
Author(s):  
Roland van den Tillaar ◽  
Gertjan Ettema

The purpose of this study was to compare the accuracy, velocity, and kinematics of throws with the dominant and nondominant arms in experienced handball players. Significant differences in throwing accuracy and ball velocity were found: decreased maximal velocities of the major joint movements and especially decreased internal rotation velocity of the shoulder. Timing differences in the onset of some joint movements, which resulted in an altered throwing pattern, could explain differences in the throwing velocity. Lower ball velocity was compensated by the increased ball release height, which was caused by an increased shoulder abduction and trunk tilt sideways angle at ball release.

2007 ◽  
Vol 23 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Roland van den Tillaar ◽  
Gertjan Ettema

The aim of this study was to investigate the contribution of upper extremity, trunk, and lower extremity movements in overarm throwing in team handball. In total, 11 joint movements during the throw were analyzed. The analysis consists of maximal angles, angles at ball release, and maximal angular velocities of the joint movements and their timing during the throw. Only the elbow angle (extension movement range) and the level of internal rotation velocity of the shoulder at ball release showed a significant relationship with the throwing performance. Also, a significant correlation was found for the timing of the maximal pelvis angle with ball velocity, indicating that better throwers started to rotate their pelvis forward earlier during the throw. No other significant correlations were found, indicating that the role of the trunk and lower limb are of minor importance for team handball players.


2011 ◽  
Vol 27 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Roland van den Tillaar ◽  
Gertjan Ettema

The aim of this study was to compare the kinematics in throwing with a regular weighted handball with 20% lighter and heavier balls in female experienced handball players. In total, eight joint movements during the throw were analyzed. The analysis consisted of maximal angles, angles at ball release, and maximal angular velocities of the joint movements and their timings during the throw. Results on 24 experienced female team handball players (mean age 18.2 ± 2.1 years) showed that the difference in ball weight affected the maximal ball velocity. The difference in ball release velocity was probably a result of the significant differences in kinematics of the major contributors to overarm throwing: elbow extension and internal rotation of the shoulder. These were altered when changing the ball weight, which resulted in differences in ball release velocity.


2003 ◽  
Vol 96 (2) ◽  
pp. 423-434 ◽  
Author(s):  
Roland van den Tillaar ◽  
Gertjan Ettema

This study investigated the influence of instruction on the ball velocity and accuracy of a goal-directed overarm throw. 9 experienced Norwegian male team handball players executed a throwing task randomly seven times under 5 different instructions varying from emphasizing speed to accuracy. When instructions increasingly emphasized accuracy, velocity decreased. However, accuracy did not improve when subjects were instructed to focus on it. A possible explanation for this finding could lie in the specific subject group. The subjects were highly experienced team handball players with an average of 12 years in the sport. Thus, the accuracy they demonstrated at high velocity might actually be already extremely high and difficult to improve upon when reducing throwing velocity. Further, the velocity of throwing when instruction emphasized accuracy was approximately 85% of the maximal velocity, indicating that experienced team handball players are trained to throw accurately at relatively high velocity.


2016 ◽  
Vol 54 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Alberto Nuño ◽  
Ignacio J. Chirosa ◽  
Roland van den Tillaar ◽  
Rafael Guisado ◽  
Ignacio Martín ◽  
...  

AbstractThe purpose of this study was to investigate the effect of central and peripheral physiological fatigue on throwing accuracy and ball release velocity in team handball. Twenty male subjects (age 24.7 ± 3.9 yrs, body mass 88.5 ± 5.0 kg, body height 1.86 ± 0.05 m, training experience 12.7 ± 3.8 yrs) from one handball team participated in this study. The participants completed four sets of eight laps of a circuit that consisted of specific team handball drills/exercises, with decreasing recovery times between the laps in each set in order to induce physiological fatigue. Duration of the recovery intervals determined the description of the effort made in each set: “light" (80 s recovery between laps), “moderate" (40 s), “hard" (20 s) and “very hard" (10 s). A heart rate, concentration of lactate in blood and the rate of perceived exertion (RPE) were recorded. Ball velocity and accuracy were measured after each set and they both decreased during a fatigue protocol. However, accuracy only decreased significantly in the end of the protocol, while ball release was already affected after the first round of the protocol. The results substantiate the initial hypothesis and confirm that both throwing accuracy and ball release velocity decrease significantly as physiological fatigue increases. These variables began to decrease when the fatigue quantification values were high or very high. The findings can be used by coaches to develop training programs to teach players how to identify fatigue thresholds and combat the effects of fatigue through decision-making skills at critical game moments.


2010 ◽  
Vol 5 (4) ◽  
pp. 469-483 ◽  
Author(s):  
Herbert Wagner ◽  
Michael Buchecker ◽  
Serge P. von Duvillard ◽  
Erich Müller

Purpose:The aims of the present study were: (1) to compare the differences in the ball release speed and throwing accuracy between the ABOVE and SIDE throw; (2) to analyze kinematic differences of these two throwing techniques; and (3) to give practical applications to team handball coaches and players.Methods:Ball release speed, throwing accuracy, and kinematics were measured via the Vicon MX 13 (Vicon Peak, Oxford, UK) from 12 male elite right-handed team handball players.Results:Results of our study suggest that the two throwing techniques differ significantly (P < .0073) in the angles and/or angular velocities of the trunk (flexion, left tilt and rotation) and shoulder (flexion and abduction) of the throwing arm that result in a significantly different ball release speed (1.4 ± 0.8 m/s; P < .001) and that throwing accuracy was not significantly different.Conclusion:Our results indicated that the different position of the hand at ball release of the ABOVE and SIDE throws is primarily caused by different trunk flexion and tilt angles that lead to differences in ball release speed but not in throwing accuracy, and that the participants try to move their throwing arm similarly in both throwing techniques.


2021 ◽  
Author(s):  
Michael E O'Connell ◽  
Kyle Lindley ◽  
John Scheffey ◽  
Alex Caravan ◽  
Joe Marsh ◽  
...  

Long-term training effects of weighted ball throwing programs have been well documented. However, the mechanisms by which these effects are facilitated are poorly understood due to the difficulty of measuring biomechanics in the baseball throwing motion. The purpose of this study is to replicate previous methods investigating within-session effects of throwing overload and underload baseballs to provide mechanistic evidence for weighted baseball training methods. We hypothesized that varying the pitched ball weight between three, four, five, six, and seven ounces will affect pitched ball velocity, upper body kinematics, lower body kinematics, kinematic velocities, and throwing arm joint kinetics during a maximum intent throwing workout. Twenty-six collegiate and professional level baseball pitchers ages 20-30 (mean age 23.5 ± 2.7 years) participated in a pitch velocity and biomechanical evaluation while pitching a series of leather weighted baseballs from a regulation pitching mound. A one-way repeated measures ANOVA was used to evaluate the within-subject effect of ball weight on a total of 15 parameters: pitch velocity, five kinematic positions, four kinematic velocities, and five kinetics. We found that as ball weight increased, pitch velocity, maximum elbow flexion, maximum pelvis rotation velocity, maximum shoulder internal rotation velocity, and maximum elbow extension velocity decreased, while anterior trunk tilt at ball release increased. Training with three- to seven-ounce baseballs can be used to work on increasing pitching velocity without increasing throwing arm joint kinetics or changing pitching mechanics in a practically significant way.


2005 ◽  
Vol 21 (1) ◽  
pp. 44-56 ◽  
Author(s):  
David F. Stodden ◽  
Glenn S. Fleisig ◽  
Scott P. McLean ◽  
James R. Andrews

To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8–3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.


2013 ◽  
Vol 1 (4) ◽  
pp. 89-95 ◽  
Author(s):  
M. A. Urbin ◽  
David Stodden ◽  
Glenn Fleisig

Individual body segment actions evolve during throwing skill development. Maximal trunk involvement is typically the last feature of the movement pattern to fully develop. The current study examined developmental levels of trunk action and the associated variability in the throwing motion. The throwing motions of children and adolescents were analyzed via motion capture and trunk actions were classified as exhibiting no rotation (n = 7), blocked rotation (n = 6), or differentiated rotation (n = 11). Results indicated nonrotators exhibited greater variability than blocked-rotators in maximum humeral external rotation and humeral horizontal adduction angles at ball release; nonrotators also demonstrated greater variability than differentiated-rotators on these parameters, in addition to forward trunk tilt and elbow extension angle at ball release. Nonrotators produced more variable peak upper torso and humeral horizontal adduction angular velocities, as well as peak upper torso linear velocity, relative to differentiated-rotators. Blocked-rotators produced more variable peak pelvis, upper torso, and humeral horizontal adduction angular velocities, as well peak pelvis linear velocity, relative to differentiated-rotators. Nonrotators were less consistent relative to blocked- and differentiated-rotators in the time that elapsed from peak pelvis angular velocity to ball release. These results indicate that greater trunk involvement is associated with more consistent movement production.


Sign in / Sign up

Export Citation Format

Share Document