scholarly journals Weighted Baseball Training Affects Arm Speed without Increasing Elbow and Shoulder Joint Kinetics

2021 ◽  
Author(s):  
Michael E O'Connell ◽  
Kyle Lindley ◽  
John Scheffey ◽  
Alex Caravan ◽  
Joe Marsh ◽  
...  

Long-term training effects of weighted ball throwing programs have been well documented. However, the mechanisms by which these effects are facilitated are poorly understood due to the difficulty of measuring biomechanics in the baseball throwing motion. The purpose of this study is to replicate previous methods investigating within-session effects of throwing overload and underload baseballs to provide mechanistic evidence for weighted baseball training methods. We hypothesized that varying the pitched ball weight between three, four, five, six, and seven ounces will affect pitched ball velocity, upper body kinematics, lower body kinematics, kinematic velocities, and throwing arm joint kinetics during a maximum intent throwing workout. Twenty-six collegiate and professional level baseball pitchers ages 20-30 (mean age 23.5 ± 2.7 years) participated in a pitch velocity and biomechanical evaluation while pitching a series of leather weighted baseballs from a regulation pitching mound. A one-way repeated measures ANOVA was used to evaluate the within-subject effect of ball weight on a total of 15 parameters: pitch velocity, five kinematic positions, four kinematic velocities, and five kinetics. We found that as ball weight increased, pitch velocity, maximum elbow flexion, maximum pelvis rotation velocity, maximum shoulder internal rotation velocity, and maximum elbow extension velocity decreased, while anterior trunk tilt at ball release increased. Training with three- to seven-ounce baseballs can be used to work on increasing pitching velocity without increasing throwing arm joint kinetics or changing pitching mechanics in a practically significant way.

2016 ◽  
Vol 9 (3) ◽  
pp. 210-215 ◽  
Author(s):  
Glenn S. Fleisig ◽  
Alek Z. Diffendaffer ◽  
Kyle T. Aune ◽  
Brett Ivey ◽  
Walter A. Laughlin

Background: Weighted-ball throwing programs are commonly used in training baseball pitchers to increase ball velocity. The purpose of this study was to compare kinematics and kinetics among weighted-ball exercises with values from standard pitching (ie, pitching standard 5-oz baseballs from a mound). Hypothesis: Ball and arm velocities would be greater with lighter balls and joint kinetics would be greater with heavier balls. Study Design: Controlled laboratory study. Methods: Twenty-five high school and collegiate baseball pitchers experienced with weighted-ball throwing were tested with an automated motion capture system. Each participant performed 3 trials of 10 different exercises: pitching 4-, 5-, 6-, and 7-oz baseballs from a mound; flat-ground crow hop throws with 4-, 5-, 6-, and 7-oz baseballs; and flat-ground hold exercises with 14- and 32-oz balls. Twenty-six biomechanical parameters were computed for each trial. Data among the 10 exercises were compared with repeated measures analysis of variance and post hoc paired t tests against the standard pitching data. Results: Ball velocity increased as ball mass decreased. There were no differences in arm and trunk velocities between throwing a standard baseball and an underweight baseball (4 oz), while arm and trunk velocities steadily decreased as ball weight increased from 5 to 32 oz. Compared with values pitching from a mound, velocities of the pelvis, shoulder, and ball were increased for flat-ground throws. In general, as ball mass increased arm torques and forces decreased; the exception was elbow flexion torque, which was significantly greater for the flat-ground holds. There were significant differences in body positions when pitching on the mound, flat-ground throws, and holds. Conclusions: While ball velocity was greatest throwing underweight baseballs, results from the study did not support the rest of the hypothesis. Kinematics and kinetics were similar between underweight and standard baseballs, while overweight balls correlated with decreased arm forces, torques, and velocities. Increased ball velocity and joint velocities were produced with crow hop throws, likely because of running forward while throwing. Clinical Relevance: As pitching slightly underweight and overweight baseballs produces variations in kinematics without increased arm kinetics, these exercises seem reasonable for training pitchers. As flat-ground throwing produces increased shoulder internal rotation velocity and elbow varus torque, these exercises may be beneficial but may also be stressful and risky. Flat-ground holds with heavy balls should not be viewed as enhancing pitching biomechanics, but rather as hybrid exercises between throwing and resistance training.


2009 ◽  
Vol 109 (1) ◽  
pp. 315-326 ◽  
Author(s):  
Roland van den Tillaar ◽  
Gertjan Ettema

The purpose of this study was to compare the accuracy, velocity, and kinematics of throws with the dominant and nondominant arms in experienced handball players. Significant differences in throwing accuracy and ball velocity were found: decreased maximal velocities of the major joint movements and especially decreased internal rotation velocity of the shoulder. Timing differences in the onset of some joint movements, which resulted in an altered throwing pattern, could explain differences in the throwing velocity. Lower ball velocity was compensated by the increased ball release height, which was caused by an increased shoulder abduction and trunk tilt sideways angle at ball release.


2005 ◽  
Vol 21 (1) ◽  
pp. 44-56 ◽  
Author(s):  
David F. Stodden ◽  
Glenn S. Fleisig ◽  
Scott P. McLean ◽  
James R. Andrews

To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8–3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.


2020 ◽  
Vol 13 (1) ◽  
pp. 66-72
Author(s):  
Agus Rusdiana ◽  
Muhamad Sigit Darmawan ◽  
Angga M Syahid ◽  
Tian Kurniawan

Background: Overhand pitching is a movement that requires the coordination of lower extremity, trunk, and upper extremity segments to effectively transfer force throughout the kinetic chain to project a baseball. Objective: The purpose of this study was to investigate the effect of cardiorespiratory fatigue on throwing ball velocity related to kinematics motion changes in baseball. Methods: The study samples included 12 male baseball athletes (19.3 ± 2.8 years old, height of 1.71.4 ± 3.1 m, and weight of 64.3 ± 3.6 kg). A descriptive quantitative method approach was used. The instruments included two high-resolution handycams (Sony HXR-MC2500, Japan), a high-speed camera (Fastec Imaging TS5-H, USA), a radar speed gun (Bushnell 101922, Germany), a 3D force platform (The AMTI Optima Series 20210, USA), 14 point manual markers, a motion capture system software (Frame DIAZ IV, Japan), and a heart rate sensor (Polar H10, Finland). Results: The results of this study showed that there were significant differences in the ball velocity (p= 0.042), stride length percentage height (p= 0.041), elbow flexion (p= 0.046), maximum shoulder horizontal adduction (p= 0.041), maximum elbow extension angular velocity (p= 0.035), maximum shoulder internal rotation (p= 0.029), and lateral trunk tilt (p= 0.029) when the pitchers were fatigued. Conclusion: Cardiorespiratory fatigue causes changes in the kinetic harmonization of upper and lower body motion, which results in a decrease in the ball velocity. These results are similar to those in previous studies conducted with the intervention of muscle fatigue during overhead baseball throwing, which causes a decrease in the performance and ball velocity.


2015 ◽  
Vol 31 (5) ◽  
pp. 370-376 ◽  
Author(s):  
Adam M. Fullenkamp ◽  
Brian M. Campbell ◽  
C. Matthew Laurent ◽  
Amanda Paige Lane

To date, biomechanical analyses of soccer kicking have focused predominantly on lower-extremity motions, with little emphasis on the trunk and upper body. The purpose of this study was to evaluate differences in trunk axial kinematics between novice (n = 10) and skilled (n = 10) participants, as well as to establish the relationship of trunk axial motion and sagittal plane thigh rotation to poststrike ball velocity. Three-dimensional body segmental motion data were captured using high-resolution motion analysis (120 Hz) while each participant completed 5 maximal instep soccer-style kicks. The results demonstrate that skilled participants use 53% greater axial trunk range of motion compared with novice participants (P < .01), as well as 62% greater peak trunk rotation velocity (P < .01). The results also show a moderate, positive correlation of peak trunk rotation velocity with poststrike ball velocity (r = .57; P < .01), and peak hip flexion velocity with poststrike ball velocity (r = .63; P < .01). The current study highlights the potential for trunk rotation-specific training to improve maximum instep kick velocity in developing soccer athletes.


Sports ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 76
Author(s):  
Dylan Mernagh ◽  
Anthony Weldon ◽  
Josh Wass ◽  
John Phillips ◽  
Nimai Parmar ◽  
...  

This is the first study to report the whole match, ball-in-play (BiP), ball-out-of-play (BoP), and Max BiP (worst case scenario phases of play) demands of professional soccer players competing in the English Championship. Effective playing time per soccer game is typically <60 min. When the ball is out of play, players spend time repositioning themselves, which is likely less physically demanding. Consequently, reporting whole match demands may under-report the physical requirements of soccer players. Twenty professional soccer players, categorized by position (defenders, midfielders, and forwards), participated in this study. A repeated measures design was used to collect Global Positioning System (GPS) data over eight professional soccer matches in the English Championship. Data were divided into whole match and BiP data, and BiP data were further sub-divided into different time points (30–60 s, 60–90 s, and >90 s), providing peak match demands. Whole match demands recorded were compared to BiP and Max BiP, with BiP data excluding all match stoppages, providing a more precise analysis of match demands. Whole match metrics were significantly lower than BiP metrics (p < 0.05), and Max BiP for 30–60 s was significantly higher than periods between 60–90 s and >90 s. No significant differences were found between positions. BiP analysis allows for a more accurate representation of the game and physical demands imposed on professional soccer players. Through having a clearer understanding of maximum game demands in professional soccer, practitioners can design more specific training methods to better prepare players for worst case scenario passages of play.


Author(s):  
Barry Gerber ◽  
Anita E. Pienaar ◽  
Ankebe Kruger

Puberty and the onset of menarche influences the motor performance of girls. However, the magnitude of these influences during varying maturity status, is not clear. This longitudinal study over two years aimed to investigate differences in motor fitness between early and late developing girls based on pre- and post-menarche status. A convenience sample (n = 58) of girls aged 13.51 ± 3.51, divided by means of the Status Quo method into pre (n = 13) and post-menarche (n = 45) groups, was used. Motor fitness was tested once annually by standardized protocols. Basic statistics, independent t-testing and a repeated measures ANOVA with a post hoc Bonferonni correction were used (p < 0.05 = statistical significance). Effect sizes were determined by Cohen’s d-values. Only explosive upper body strength differed significantly between groups during baseline, favoring post-menarche girls. Initially, post-menarche girls showed advantages in hand-eye coordination and speed (p > 0.05) with pre-menarche girls performing better in agility and explosive leg strength (p > 0.05). At 15.51 years, no significant, between-group differences were found. Pre-menarche girls surpassed post-menarche girls in hand-eye coordination and 0–40 m speed and post-menarche girls displayed higher explosive leg and upper body strength scores (p > 0.05). Our data show that the potential to excel in sport based on motor capabilities can only be accurately estimated 1–2 years after reaching menarche.


2018 ◽  
Vol 34 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Wing-Kai Lam ◽  
Winson Chiu-Chun Lee ◽  
Wei Min Lee ◽  
Christina Zong-Hao Ma ◽  
Pui Wah Kong

This study examined the effects of shoes’ segmented forefoot stiffness on athletic performance and ankle and metatarsophalangeal joint kinematics and kinetics in basketball movements. Seventeen university basketball players performed running vertical jumps and 5-m sprints at maximum effort with 3 basketball shoes of various forefoot plate conditions (medial plate, medial + lateral plates, and no-plate control). One-way repeated measures ANOVAs were used to examine the differences in athletic performance, joint kinematics, and joint kinetics among the 3 footwear conditions (α = .05). Results indicated that participants wearing medial + lateral plates shoes demonstrated 2.9% higher jump height than those wearing control shoes (P = .02), but there was no significant differences between medial plate and control shoes (P > .05). Medial plate shoes produced greater maximum plantar flexion velocity than the medial + lateral plates shoes (P < .05) during sprinting. There were no significant differences in sprint time. These findings implied that inserting plates spanning both the medial and lateral aspects of the forefoot could enhance jumping, but not sprinting performances. The use of a medial plate alone, although induced greater plantar flexion velocity at the metatarsophalangeal joint during sprinting, was not effective in improving jump heights or sprint times.


2021 ◽  
Vol 77 (1) ◽  
pp. 235-244
Author(s):  
Darío Martínez-García ◽  
Ángela Rodríguez-Perea ◽  
Álvaro Huerta-Ojeda ◽  
Daniel Jerez-Mayorga ◽  
Daniel Aguilar-Martínez ◽  
...  

Abstract The purpose of this study was to investigate the acute effect of pre-activation with Variable Intra-Repetition Resistance and isometry on the overhead throwing velocity in handball players. Fourteen female handball players took part in the study (age: 21.2 ± 2.7 years, experience: 10.9 ± 3.5 years). For Post-Activation Potentiation, two pre-activation methods were used: (I) Variable Intra-Repetition Resistance: 1 x 5 maximum repetitions at an initial velocity of 0.6 m·s-1 and a final velocity of 0.9 m·s-1; (II) Isometry: 1 x 5 s of maximum voluntary isometric contraction. Both methods were "standing unilateral bench presses" with the dominant arm, using a functional electromechanical dynamometer. The variable analysed was the mean of the three overhead throws. Ball velocity was measured with a radar (Stalker ATS). The statistical analysis was performed using ANOVA with repeated measures. No significant differences were found for either method (variable resistance intra-repetition: p = 0.194, isometry: p = 0.596). Regarding the individual responses, the analysis showed that 86% of the sample increased throwing velocity with the variable resistance intra-repetition method, while 93% of the sample increased throwing velocity with the isometric method. Both the variable intra-repetition resistance and isometric methods show improvements in ball velocity in female handball players. However, the authors recommend checking individual responses, since the results obtained were influenced by the short rest interval between the pre-activation and the experimental sets.


2018 ◽  
Vol 38 (02) ◽  
pp. 133-139 ◽  
Author(s):  
Michelle Meng Yim Tong ◽  
Vincent Cheng-Hsin Liu ◽  
Toby Hall

Background: Range of motion (ROM) asymmetry between sides is one indicator of a positive neurodynamic test, but this has been less well studied for the ulnar nerve. Objective: The purpose of this study was to investigate side-to-side variation in elbow ROM during an ulnar neurodynamic test sequence, including contralateral cervical side flexion, in 40 asymptomatic subjects. Methods: A traditional goniometer was used to measure elbow flexion ROM at two end points, onset of resistance ([Formula: see text]1) and symptom onset ([Formula: see text]1). Two repeated measures of [Formula: see text]1 and [Formula: see text]1 were taken on each side. Results: Reliability for [Formula: see text]1 and [Formula: see text]1 was found to be good (ICC [Formula: see text], SEM [Formula: see text]) with no significant difference in mean ROM between sides. A significant relationship between sides was seen ([Formula: see text] values [Formula: see text]) and [Formula: see text] values [Formula: see text]; this indicates at least 23% of the variance observed in one limb was accounted for by range in the opposite limb. This relationship was slightly stronger for [Formula: see text]1 than [Formula: see text]1. Lower bound scores indicate that intra-individual ROM difference [Formula: see text] for [Formula: see text]1 and 22° for [Formula: see text]1 would exceed normal ROM asymmetry. Conclusion: These findings provide clinicians with background information of ROM asymmetry during the ulnar neurodynamic test.


Sign in / Sign up

Export Citation Format

Share Document