Relationship of Biomechanical Factors to Baseball Pitching Velocity: Within Pitcher Variation

2005 ◽  
Vol 21 (1) ◽  
pp. 44-56 ◽  
Author(s):  
David F. Stodden ◽  
Glenn S. Fleisig ◽  
Scott P. McLean ◽  
James R. Andrews

To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8–3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.

2020 ◽  
Vol 13 (1) ◽  
pp. 66-72
Author(s):  
Agus Rusdiana ◽  
Muhamad Sigit Darmawan ◽  
Angga M Syahid ◽  
Tian Kurniawan

Background: Overhand pitching is a movement that requires the coordination of lower extremity, trunk, and upper extremity segments to effectively transfer force throughout the kinetic chain to project a baseball. Objective: The purpose of this study was to investigate the effect of cardiorespiratory fatigue on throwing ball velocity related to kinematics motion changes in baseball. Methods: The study samples included 12 male baseball athletes (19.3 ± 2.8 years old, height of 1.71.4 ± 3.1 m, and weight of 64.3 ± 3.6 kg). A descriptive quantitative method approach was used. The instruments included two high-resolution handycams (Sony HXR-MC2500, Japan), a high-speed camera (Fastec Imaging TS5-H, USA), a radar speed gun (Bushnell 101922, Germany), a 3D force platform (The AMTI Optima Series 20210, USA), 14 point manual markers, a motion capture system software (Frame DIAZ IV, Japan), and a heart rate sensor (Polar H10, Finland). Results: The results of this study showed that there were significant differences in the ball velocity (p= 0.042), stride length percentage height (p= 0.041), elbow flexion (p= 0.046), maximum shoulder horizontal adduction (p= 0.041), maximum elbow extension angular velocity (p= 0.035), maximum shoulder internal rotation (p= 0.029), and lateral trunk tilt (p= 0.029) when the pitchers were fatigued. Conclusion: Cardiorespiratory fatigue causes changes in the kinetic harmonization of upper and lower body motion, which results in a decrease in the ball velocity. These results are similar to those in previous studies conducted with the intervention of muscle fatigue during overhead baseball throwing, which causes a decrease in the performance and ball velocity.


1998 ◽  
Vol 14 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Rafael F. Escamilla ◽  
Glenn S. Fleisig ◽  
Steven W. Barrentine ◽  
Naiquan Zheng ◽  
James R. Andrews

The purpose of this study was to establish and compare kinematic data among four groups of collegiate pitchers who threw the fastball (FA), change-up (CH), curveball (CU), and slider (SL). Twenty-six kinematic parameters at lead foot contact, during the arm-cocking and arm acceleration phases, and at ball release were measured for 16 collegiate baseball pitchers. Approximately 60% of these parameters showed significant differences among the four pitch variations. The greatest number of differences (14 of 26) occurred between the FA and CH groups, while the fewest differences (2 of 26) occurred between the FA and SL groups. The CH group had the smallest knee and elbow flexion at lead foot contact and the greatest knee and elbow flexion at ball release. During the arm-cocking and arm acceleration phases, peak shoulder, elbow, and trunk angular velocities were generally greatest in the FA and SL groups and smallest in the CH group. At ball release the CH group had the most upright trunk and the greatest horizontal shoulder adduction, while the CU group had the most lateral trunk tilt. Understanding kinematic differences can help a pitcher select and learn different pitches and can help a batter learn how to identify different pitches.


2016 ◽  
Vol 9 (3) ◽  
pp. 210-215 ◽  
Author(s):  
Glenn S. Fleisig ◽  
Alek Z. Diffendaffer ◽  
Kyle T. Aune ◽  
Brett Ivey ◽  
Walter A. Laughlin

Background: Weighted-ball throwing programs are commonly used in training baseball pitchers to increase ball velocity. The purpose of this study was to compare kinematics and kinetics among weighted-ball exercises with values from standard pitching (ie, pitching standard 5-oz baseballs from a mound). Hypothesis: Ball and arm velocities would be greater with lighter balls and joint kinetics would be greater with heavier balls. Study Design: Controlled laboratory study. Methods: Twenty-five high school and collegiate baseball pitchers experienced with weighted-ball throwing were tested with an automated motion capture system. Each participant performed 3 trials of 10 different exercises: pitching 4-, 5-, 6-, and 7-oz baseballs from a mound; flat-ground crow hop throws with 4-, 5-, 6-, and 7-oz baseballs; and flat-ground hold exercises with 14- and 32-oz balls. Twenty-six biomechanical parameters were computed for each trial. Data among the 10 exercises were compared with repeated measures analysis of variance and post hoc paired t tests against the standard pitching data. Results: Ball velocity increased as ball mass decreased. There were no differences in arm and trunk velocities between throwing a standard baseball and an underweight baseball (4 oz), while arm and trunk velocities steadily decreased as ball weight increased from 5 to 32 oz. Compared with values pitching from a mound, velocities of the pelvis, shoulder, and ball were increased for flat-ground throws. In general, as ball mass increased arm torques and forces decreased; the exception was elbow flexion torque, which was significantly greater for the flat-ground holds. There were significant differences in body positions when pitching on the mound, flat-ground throws, and holds. Conclusions: While ball velocity was greatest throwing underweight baseballs, results from the study did not support the rest of the hypothesis. Kinematics and kinetics were similar between underweight and standard baseballs, while overweight balls correlated with decreased arm forces, torques, and velocities. Increased ball velocity and joint velocities were produced with crow hop throws, likely because of running forward while throwing. Clinical Relevance: As pitching slightly underweight and overweight baseballs produces variations in kinematics without increased arm kinetics, these exercises seem reasonable for training pitchers. As flat-ground throwing produces increased shoulder internal rotation velocity and elbow varus torque, these exercises may be beneficial but may also be stressful and risky. Flat-ground holds with heavy balls should not be viewed as enhancing pitching biomechanics, but rather as hybrid exercises between throwing and resistance training.


2009 ◽  
Vol 109 (1) ◽  
pp. 315-326 ◽  
Author(s):  
Roland van den Tillaar ◽  
Gertjan Ettema

The purpose of this study was to compare the accuracy, velocity, and kinematics of throws with the dominant and nondominant arms in experienced handball players. Significant differences in throwing accuracy and ball velocity were found: decreased maximal velocities of the major joint movements and especially decreased internal rotation velocity of the shoulder. Timing differences in the onset of some joint movements, which resulted in an altered throwing pattern, could explain differences in the throwing velocity. Lower ball velocity was compensated by the increased ball release height, which was caused by an increased shoulder abduction and trunk tilt sideways angle at ball release.


2002 ◽  
Vol 18 (4) ◽  
pp. 306-320 ◽  
Author(s):  
Tomoyuki Matsuo ◽  
Tsuyoshi Matsumoto ◽  
Yoshiyuki Mochizuki ◽  
Yoshihiro Takada ◽  
Kenji Saito

Baseball coaches train pitchers to keep their shoulder abduction at 90º during delivery, because this angle is believed to maximize ball speed and reduce the stress on the throwing arm. In fact, however, the shoulder abduction angle for some pitchers, including professional pitchers, deviates from 90º. There likely are reasons for such deviation. The purposes of this study, therefore, were to investigate the effects of shoulder abduction angle on ball velocity and on the injury-related joint kinetic variable, and to determine why the shoulder abduction angle varies among pitchers. Eleven professional pitchers were videotaped with two high-speed cameras. The resulting kinematic data were used to simulate several pitching motions by varying the shoulder abduction angle from the actual angle. Maximum wrist velocity was used as a reasonable approximation of ball velocity. Elbow varus torque was used as a kinetic variable. The square torque for the throwing arm and torque change for the throwing arm were used to investigate the cause of the variation. It was found that the shoulder abduction angle of 90º did not always maximize wrist velocity nor minimize elbow varus torque. The actual shoulder abduction angle for each pitcher was highly consistent with the angle that minimized both square torque and torque change. The results suggested that the proficient throwers in this study moved their pitching arm so as to minimize mechanical cost while at the same time optimizing performance.


2021 ◽  
Author(s):  
Michael E O'Connell ◽  
Kyle Lindley ◽  
John Scheffey ◽  
Alex Caravan ◽  
Joe Marsh ◽  
...  

Long-term training effects of weighted ball throwing programs have been well documented. However, the mechanisms by which these effects are facilitated are poorly understood due to the difficulty of measuring biomechanics in the baseball throwing motion. The purpose of this study is to replicate previous methods investigating within-session effects of throwing overload and underload baseballs to provide mechanistic evidence for weighted baseball training methods. We hypothesized that varying the pitched ball weight between three, four, five, six, and seven ounces will affect pitched ball velocity, upper body kinematics, lower body kinematics, kinematic velocities, and throwing arm joint kinetics during a maximum intent throwing workout. Twenty-six collegiate and professional level baseball pitchers ages 20-30 (mean age 23.5 ± 2.7 years) participated in a pitch velocity and biomechanical evaluation while pitching a series of leather weighted baseballs from a regulation pitching mound. A one-way repeated measures ANOVA was used to evaluate the within-subject effect of ball weight on a total of 15 parameters: pitch velocity, five kinematic positions, four kinematic velocities, and five kinetics. We found that as ball weight increased, pitch velocity, maximum elbow flexion, maximum pelvis rotation velocity, maximum shoulder internal rotation velocity, and maximum elbow extension velocity decreased, while anterior trunk tilt at ball release increased. Training with three- to seven-ounce baseballs can be used to work on increasing pitching velocity without increasing throwing arm joint kinetics or changing pitching mechanics in a practically significant way.


Author(s):  
Anne Schwarz ◽  
Janne M. Veerbeek ◽  
Jeremia P. O. Held ◽  
Jaap H. Buurke ◽  
Andreas R. Luft

Background: Deficits in interjoint coordination, such as the inability to move out of synergy, are frequent symptoms in stroke subjects with upper limb impairments that hinder them from regaining normal motor function. Kinematic measurements allow a fine-grained assessment of movement pathologies, thereby complementing clinical scales, like the Fugl–Meyer Motor Assessment of the Upper Extremity (FMMA-UE). The study goal was to investigate the effects of the performed task, the tested arm, the dominant affected hand, upper limb function, and age on spatiotemporal parameters of the elbow, shoulder, and trunk. The construct validity of the metrics was examined by relating them with each other, the FMMA-UE, and its arm section.Methods: This is a cross-sectional observational study including chronic stroke patients with mild to moderate upper limb motor impairment. Kinematic measurements were taken using a wearable sensor suit while performing four movements with both upper limbs: (1) isolated shoulder flexion, (2) pointing, (3) reach-to-grasp a glass, and (4) key insertion. The kinematic parameters included the joint ranges of shoulder abduction/adduction, shoulder flexion/extension, and elbow flexion/extension; trunk displacement; shoulder–elbow correlation coefficient; median slope; and curve efficiency. The effects of the task and tested arm on the metrics were investigated using a mixed-model analysis. The validity of metrics compared to clinically measured interjoint coordination (FMMA-UE) was done by correlation analysis.Results: Twenty-six subjects were included in the analysis. The movement task and tested arm showed significant effects (p < 0.05) on all kinematic parameters. Hand dominance resulted in significant effects on shoulder flexion/extension and curve efficiency. The level of upper limb function showed influences on curve efficiency and the factor age on median slope. Relations with the FMMA-UE revealed the strongest and significant correlation for curve efficiency (r = 0.75), followed by shoulder flexion/extension (r = 0.68), elbow flexion/extension (r = 0.53), and shoulder abduction/adduction (r = 0.49). Curve efficiency additionally correlated significantly with the arm subsection, focusing on synergistic control (r = 0.59).Conclusion: The kinematic parameters of the upper limb after stroke were influenced largely by the task. These results underpin the necessity to assess different relevant functional movements close to real-world conditions rather than relying solely on clinical measures.Study Registration: clinicaltrials.gov, identifier NCT03135093 and BASEC-ID 2016-02075.


2006 ◽  
Vol 22 (2) ◽  
pp. 93-102 ◽  
Author(s):  
Tomoyuki Matsuo ◽  
Glenn S. Fleisig ◽  
Naiquan Zheng ◽  
James R. Andrews

Elbow varus torque is a primary factor in the risk of elbow injury during pitching. To examine the effects of shoulder abduction and lateral trunk tilt angles on elbow varus torque, we conducted simulation and regression analyses on 33 college baseball pitchers. Motion data were used for computer simulations in which two angles— shoulder abduction and lateral trunk tilt—were systematically altered. Forty-two simulated motions were generated for each pitcher, and the peak elbow varus torque for each simulated motion was calculated. A two-way analysis of variance was performed to analyze the effects of shoulder abduction and trunk tilt on elbow varus torque. Regression analyses of a simple regression model, second-order regression model, and multiple regression model were also performed. Although regression analyses did not show any significant relationship, computer simulation indicated that the peak elbow varus torque was affected by both angles, and the interaction of those angles was also significant. As trunk tilt to the contralateral side increased, the shoulder abduction angle producing the minimum peak elbow varus torque decreased. It is suggested that shoulder abduction and lateral trunk tilt may be only two of several determinants of peak elbow varus torque.


2020 ◽  
Vol 6 (1) ◽  
pp. e000704
Author(s):  
Marie-Andrée Mercier ◽  
Mathieu Tremblay ◽  
Catherine Daneau ◽  
Martin Descarreaux

BackgroundBall velocity, accuracy and game statistics represent three methods used to measure pitching performance. However, individual determinants of pitching performance are more elusive.ObjectivesThe aims of this study were to classify the performance factors associated with baseball pitchers, to identify the methods used to quantify their abilities through all features of the game and to document relationships between performance factors and indicators.DesignScoping review.Data sourcesElectronic searches of MEDLINE, Academic Search Complete, CINAHL, SportDiscus, PubMed, PsycINFO, Cochrane and of grey literature were undertaken from inception to January 2019.Eligibility criteria for selecting studiesCross-sectional studies that investigated the relationship between performance indicators and individual performance factors in healthy baseball pitchers were selected.ResultsThirty-four cross-sectional studies investigating individual potential factors of pitching performance met the inclusion criteria. The primary performance factors investigated were kinematic, kinetic, timing outcomes, personal characteristics, physical tests and range of motion. Shoulder horizontal adduction (SHA), upper torso forward flexion, maximal shoulder external rotation, upper torso rotation angle, upper torso lateral flexion, lead knee flexion (LKF) and forward trunk tilt (FTT) were identified as key kinematic features associated with increased ball velocity. Shoulder proximal force and peak elbow proximal forces were associated with greater ball velocity. Individual performances in jumping tests and body weight (BW) are also associated with pitching performance.Summary/conclusionBased on studies presenting low and moderate risk of bias, we conclude that BW, age and kinematics, such as FTT, LKF, SHA and lateral trunk tilt, are associated with pitching performance.


Sign in / Sign up

Export Citation Format

Share Document