Nature of Age-Related Changes in Muscle Strength of the Extremities of Women

1996 ◽  
Vol 83 (3_suppl) ◽  
pp. 1155-1160 ◽  
Author(s):  
Richard W. Bohannon

Age-related changes in the muscle strength of the extremities of 123 women (20–79 years) were measured using a hand-held dynamometer. The isometric strength of three upper- and three lower-extremity muscle actions declined across ages. The magnitudes of strength decreases were a function of both the action and side tested. The earlier and steeper strength declines in actions of functional importance, e.g., knee extension, should alert those working with aging women of the potential importance of strengthening such muscle actions.

2008 ◽  
Vol 114 (12) ◽  
pp. 719-727 ◽  
Author(s):  
Natalie El Haber ◽  
Bircan Erbas ◽  
Keith D. Hill ◽  
John D. Wark

An age-related decline in balance, gait and lower-extremity muscle strength measures may lead to increased risk of falls and fractures. Previous studies have reported a possible non-linear age-related decline in these measures, but the choice of methodological approach has limited its interpretation. Healthy community-dwelling women (n=212) 21–82 years of age were evaluated for strength [Nicholas MMT (manual muscle tester)], gait [CSA (clinical stride analyser)], activity [HAP (human activity profile)] and static and dynamic balance [CBS (Chattecx balance system), LBT (Lord's balance test) and the ST (step test)]. A GAM (generalized additive model) was developed for each outcome variable to estimate the functional relationship, with age as a continuous variable. Performance was maintained until 45–55 years of age, depending on the outcome measure. Thereafter a decline in performance was evident with increasing age in all measures. Overall, a significant non-linear relationship with age was demonstrated for lower-extremity strength measures (MMT), velocity and double support duration of gait (CSA) and some clinical and laboratory balance tests [ST, LBT (eyes open) and the CBS]. Linear relationships were demonstrated by the LBT with eyes closed and activity measures. Balance, lower-extremity muscle strength and gait may decline non-linearly with age. Our study suggests possible threshold effects between age and balance, muscle strength and gait measures in women. Further research into these threshold effects may have implications for the optimal timing of exercise and other interventions to reduce the risk of falls and fractures.


2009 ◽  
Vol 17 (4) ◽  
pp. 416-443 ◽  
Author(s):  
Anthony P. Marsh ◽  
Michael E. Miller ◽  
W. Jack Rejeski ◽  
Stacy L. Hutton ◽  
Stephen B. Kritchevsky

It is unclear whether strength training (ST) or power training (PT) is the more effective intervention at improving muscle strength and power and physical function in older adults. The authors compared the effects of lower extremity PT with those of ST on muscle strength and power in 45 older adults (74.8 ± 5.7 yr) with self-reported difficulty in common daily activities. Participants were randomized to 1 of 3 treatment groups: PT, ST, or wait-list control. PT and ST trained 3 times/wk for 12 wk using knee-extension (KE) and leg-press (LP) machines at ~70% of 1-repetition maximum (1RM). For PT, the concentric phase of the KE and LP was completed “as fast as possible,” whereas for ST the concentric phase was 2–3 s. Both PT and ST paused briefly at the midpoint of the movement and completed the eccentric phase of the movement in 2–3 s. PT and ST groups showed significant improvements in KE and LP 1RM compared with the control group. Maximum KE and LP power increased approximately twofold in PT compared with ST. At 12 wk, compared with control, maximum KE and LP power were significantly increased for the PT group but not for the ST group. In older adults with compromised function, PT leads to similar increases in strength and larger increases in power than ST.


Author(s):  
Chisato Hayashi ◽  
Soshiro Ogata ◽  
Tadashi Okano ◽  
Hiromitsu Toyoda ◽  
Sonoe Mashino

Abstract Background The effects of group exercise on the physical function of community-dwelling older adults remain unclear. The changes in lower extremity muscle strength, timed up and go (TUG) time, and the motor fitness scale (MFS), over time, among older adults who expressed a willingness to participate in community-based physical exercise groups, were determined using multilevel modelling. Methods We analyzed data of 2407 older adults between April 2010 and December 2019 from the registry of physical tests of community-based physical exercise groups. We conducted a retrospective cohort study to assess the effect of physical exercise on lower extremity muscle strength, TUG time, and MFS scores. The durations of the exercises were evaluated by frequency of physical test’s participate. Results A deterioration in lower extremity muscle strength was found in the short-term participant group only. However, in the mid-term and long-term participation groups, lower extremity muscle strength showed a trend of improvement. The TUG time and the MFS score were negatively correlated with increasing age in both groups divided by the duration of participation. However, there was a slower rate of deterioration in the long-term participation group. Discussion Lower extremity muscle strength, TUG time, and MFS scores decline with increasing age and there were differences in the slope of deterioration that depended on the duration of participation in community-based group exercise. Conclusion Participation in group exercise improved lower extremity muscle strength, TUG time, and MFS scores of older adults living in a community. The positive effects of group exercise were dependent on long-term participation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hiroki Yabe ◽  
Yuto Imoto ◽  
Ayaka Onoyama ◽  
Sayaka Ito ◽  
Kenichi Kono ◽  
...  

Abstract Background The risk of adverse events associated with peritoneal dialysis (PD) in elderly patients has not been thoroughly investigated. The purpose of this study was to assess the association between physical function and hospitalization in elderly PD patients. Methods This is a single-center prospective observational cohort study. Thirty-three aged patients (74.8 ± 5.9 years) participated in a 6-min walk distance, short physical performance battery (SPPB), lower extremity muscle strength, and 10-m walk speed. All subjects were followed until hospitalization to the end of the follow-up period. Results The 6-min walk distance was 332 ± 112.5 m; SPPB was 11 (8.3–12) points; the lower extremity muscle strength was 36.6 ± 9.6%; 10-m walk speed was 1.1± 0.2 m/s. During the follow-up, 19 patients (57.5%) were hospitalized. In the Kaplan-Meier survival analysis and log-rank test, a lower 6-min walk distance and PD vintage were significantly associated with hospitalization (p<0.05). After adjustment for PD vintage in Cox proportional analysis, the 6-min walk distance remained associated with hospitalization (95% confidence interval, 0.98–0.99). Conclusion Lower exercise tolerance assessed by the 6-min walk distance was significantly associated with hospitalization in elderly PD patients. Our findings indicate that measurement and intervention of exercise intolerance are essential to predict the clinical outcomes of elderly PD patients. Trial registration This study was prospectively registered at inception in the UMIN Clinical Trials Registry under identification number UMIN000038405.


Author(s):  
You-jou Hung ◽  
Jenna Boehm ◽  
Morgan Reynolds ◽  
Kallee Whitehead ◽  
Kaylyn Leland

Ankle injuries are common among young ballet dancers. These injuries may be attributed to ankle instability, insufficient lower extremity strength, and poor balance control. The purpose of this study was to explore whether these dancers exhibit functional ankle instability and if their single-leg balance control and lower extremity muscle strength correlate with functional ankle instability and leg injuries. Twenty-one ballet dancers (aged 10 to 17 years) participated in the study. The Cumberland Ankle Instability Tool (CAIT) questionnaire was used to examine functional ankle stability. Isometric muscle strength of the major lower extremity muscles was measured with a digital hand-held dynamometer. Single-leg balance was evaluated with the Y-Balance Test (YBT) and three Athletic Single-leg Stability Test (ASLST) protocols. Lower extremity injuries (self-reported) within 6 months after testing were recorded for correlation analyses. Both dominant and non-dominant ankles of the subjects exhibited functional ankle instability (26.71 and 25.71, respectively). Raising the center of mass (passé and first arm position) during the ASLST did not significantly affect balance performance (p = 0.104). However, removing extrinsic visual feedback significantly decreased single-leg balance (p < 0.001). In general, there was low correlation (r ≤ 0.49) between muscle strength, CAIT, YBT, and ASLST scores with lower extremity injuries. It is concluded that for young ballet dancers lower extremity muscle strength and single-leg balance control may not be strong contributing factors to leg injuries. This study also suggests that functional ankle stability may not have a direct impact on single-leg balance, and ballet dancers rely heavily on extrinsic visual feedback for single-leg balance control. Teachers might consider minimizing extrinsic feedback to challenge ballet dancers when implementing training protocols for single-leg balance control.


Sign in / Sign up

Export Citation Format

Share Document