COORDINATION BETWEEN BREATHING AND MENTAL GROUPING OF PIANISTIC FINGER MOVEMENTS

2002 ◽  
Vol 95 (6) ◽  
pp. 339 ◽  
Author(s):  
DIETRICH EBERT
Keyword(s):  
2004 ◽  
Vol 35 (03) ◽  
Author(s):  
S Leistner ◽  
T Sander ◽  
M Burghoff ◽  
G Curio ◽  
L Trahms ◽  
...  

2020 ◽  
Vol 132 (5) ◽  
pp. 1358-1366
Author(s):  
Chao-Hung Kuo ◽  
Timothy M. Blakely ◽  
Jeremiah D. Wander ◽  
Devapratim Sarma ◽  
Jing Wu ◽  
...  

OBJECTIVEThe activation of the sensorimotor cortex as measured by electrocorticographic (ECoG) signals has been correlated with contralateral hand movements in humans, as precisely as the level of individual digits. However, the relationship between individual and multiple synergistic finger movements and the neural signal as detected by ECoG has not been fully explored. The authors used intraoperative high-resolution micro-ECoG (µECoG) on the sensorimotor cortex to link neural signals to finger movements across several context-specific motor tasks.METHODSThree neurosurgical patients with cortical lesions over eloquent regions participated. During awake craniotomy, a sensorimotor cortex area of hand movement was localized by high-frequency responses measured by an 8 × 8 µECoG grid of 3-mm interelectrode spacing. Patients performed a flexion movement of the thumb or index finger, or a pinch movement of both, based on a visual cue. High-gamma (HG; 70–230 Hz) filtered µECoG was used to identify dominant electrodes associated with thumb and index movement. Hand movements were recorded by a dataglove simultaneously with µECoG recording.RESULTSIn all 3 patients, the electrodes controlling thumb and index finger movements were identifiable approximately 3–6-mm apart by the HG-filtered µECoG signal. For HG power of cortical activation measured with µECoG, the thumb and index signals in the pinch movement were similar to those observed during thumb-only and index-only movement, respectively (all p > 0.05). Index finger movements, measured by the dataglove joint angles, were similar in both the index-only and pinch movements (p > 0.05). However, despite similar activation across the conditions, markedly decreased thumb movement was observed in pinch relative to independent thumb-only movement (all p < 0.05).CONCLUSIONSHG-filtered µECoG signals effectively identify dominant regions associated with thumb and index finger movement. For pinch, the µECoG signal comprises a combination of the signals from individual thumb and index movements. However, while the relationship between the index finger joint angle and HG-filtered signal remains consistent between conditions, there is not a fixed relationship for thumb movement. Although the HG-filtered µECoG signal is similar in both thumb-only and pinch conditions, the actual thumb movement is markedly smaller in the pinch condition than in the thumb-only condition. This implies a nonlinear relationship between the cortical signal and the motor output for some, but importantly not all, movement types. This analysis provides insight into the tuning of the motor cortex toward specific types of motor behaviors.


Author(s):  
George P. Prigatano ◽  
Sandro Barbosa de Oliveira ◽  
Carlos Wellington Passos Goncalves ◽  
Sheila Marques Denucci ◽  
Roberta Monteiro Pereira ◽  
...  

Abstract Objective: Selective motor inhibition is known to decline with age. The purpose of this study was to determine the frequency of failures at inhibitory control of adjacent finger movements while performing a repetitive finger tapping task in young, middle-aged and older adults. Potential education and sex effects were also evaluated. Methods: Kinematic recordings of adjacent finger movements were obtained on 107 healthy adults (ages 20–80) while they performed a modified version of the Halstead Finger Tapping Test (HTFF). Study participants were instructed to inhibit all finger movements while tapping with the index finger. Results: Inability to inhibit adjacent finger movements while performing the task was infrequent in young adults (2.9% of individuals between 20 and 39 years of age) but increased with age (23.3% between the ages of 40 and 59; 31.0% between ages 60 and 80). Females and males did not differ in their inability to inhibit adjacent finger movements, but individuals with a college education showed a lower frequency of failure to inhibit adjacent finger movements (10.3%) compared to those with a high school education (28.6%). These findings were statistically significant only for the dominant hand. Conclusion: Selective motor inhibition failures are most common in the dominant hand and occur primarily in older healthy adults while performing the modified version of the HFTT. Monitoring selective motor inhibition failures may have diagnostic significance.


2020 ◽  
Vol 1 ◽  
Author(s):  
Youngmok Yun ◽  
Youngjin Na ◽  
Paria Esmatloo ◽  
Sarah Dancausse ◽  
Alfredo Serrato ◽  
...  

Abstract We have developed a one-of-a-kind hand exoskeleton, called Maestro, which can power finger movements of those surviving severe disabilities to complete daily tasks using compliant joints. In this paper, we present results from an electromyography (EMG) control strategy conducted with spinal cord injury (SCI) patients (C5, C6, and C7) in which the subjects completed daily tasks controlling Maestro with EMG signals from their forearm muscles. With its compliant actuation and its degrees of freedom that match the natural finger movements, Maestro is capable of helping the subjects grasp and manipulate a variety of daily objects (more than 15 from a standardized set). To generate control commands for Maestro, an artificial neural network algorithm was implemented along with a probabilistic control approach to classify and deliver four hand poses robustly with three EMG signals measured from the forearm and palm. Increase in the scores of a standardized test, called the Sollerman hand function test, and enhancement in different aspects of grasping such as strength shows feasibility that Maestro can be capable of improving the hand function of SCI subjects.


2014 ◽  
Vol 232 (6) ◽  
pp. 1739-1750 ◽  
Author(s):  
Carlo Bruttini ◽  
Roberto Esposti ◽  
Francesco Bolzoni ◽  
Paolo Cavallari

Author(s):  
Anna-Maria Johansson ◽  
Helena Grip ◽  
Louise Rönnqvist ◽  
Jonas Selling ◽  
Carl-Johan Boraxbekk ◽  
...  

AbstractThe ability to perform individual finger movements, highly important in daily activities, involves visual monitoring and proprioception. We investigated the influence of vision on the spatial and temporal control of independent finger movements, for the dominant and non-dominant hand and in relation to sex. Twenty-six healthy middle-aged to old adults (M age = 61 years; range 46–79 years; females n = 13) participated. Participants performed cyclic flexion–extension movements at the metacarpophalangeal joint of one finger at a time while keeping the other fingers as still as possible. Movements were recorded using 3D optoelectronic motion technique (120 Hz). The movement trajectory distance; speed peaks (movement smoothness); Individuation Index (II; the degree a finger can move in isolation from the other fingers) and Stationarity Index (SI; how still a finger remains while the other fingers move) were extracted. The main findings were: (1) vision only improved the II and SI marginally; (2) longer trajectories were evident in the no-vision condition for the fingers of the dominant hand in the female group; (3) longer trajectories were specifically evident for the middle and ring fingers within the female group; (4) females had marginally higher II and SI compared with males; and (5) females had fewer speed peaks than males, particularly for the ring finger. Our results suggest that visual monitoring of finger movements marginally improves performance of our non-manipulative finger movement task. A consistent finding was that females showed greater independent finger control compared with males.


Science ◽  
2015 ◽  
Vol 350 (6256) ◽  
pp. 98-101 ◽  
Author(s):  
Masahiro Sawada ◽  
Kenji Kato ◽  
Takeharu Kunieda ◽  
Nobuhiro Mikuni ◽  
Susumu Miyamoto ◽  
...  

Motivation facilitates recovery after neuronal damage, but its mechanism is elusive. It is generally thought that the nucleus accumbens (NAc) regulates motivation-driven effort but is not involved in the direct control of movement. Using causality analysis, we identified the flow of activity from the NAc to the sensorimotor cortex (SMC) during the recovery of dexterous finger movements after spinal cord injury at the cervical level in macaque monkeys. Furthermore, reversible pharmacological inactivation of the NAc during the early recovery period diminished high-frequency oscillatory activity in the SMC, which was accompanied by a transient deficit of amelioration in finger dexterity obtained by rehabilitation. These results demonstrate that during recovery after spinal damage, the NAc up-regulates the high-frequency activity of the SMC and is directly involved in the control of finger movements.


Sign in / Sign up

Export Citation Format

Share Document