scholarly journals Solid-state interfacial reaction in molybdenum-carbide systems at high temperature-pressure, and its application to bonding technique.

1986 ◽  
Vol 35 (388) ◽  
pp. 35-40 ◽  
Author(s):  
Akihiro HORIGUCHI ◽  
Katsuaki SUGANUMA ◽  
Yoshinari MIYAMOTO ◽  
Masahiko SHIMADA ◽  
Mitsue KOIZUMI
2021 ◽  
Vol 31 (3) ◽  
pp. 415-418
Author(s):  
Vladimir Yu. Osipov ◽  
Fedor M. Shakhov ◽  
Nikolai M. Romanov ◽  
Kazuyuki Takai

2021 ◽  
Vol 505 ◽  
pp. 230083
Author(s):  
Yuxuan Wu ◽  
Sheng Wang ◽  
Min Sang ◽  
Quan Shu ◽  
Junshuo Zhang ◽  
...  
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 736
Author(s):  
Man Li ◽  
Tao Chen ◽  
Seunghyun Song ◽  
Yang Li ◽  
Joonho Bae

The challenge of safety problems in lithium batteries caused by conventional electrolytes at high temperatures is addressed in this study. A novel solid electrolyte (HKUST-1@IL-Li) was fabricated by immobilizing ionic liquid ([EMIM][TFSI]) in the nanopores of a HKUST-1 metal–organic framework. 3D angstrom-level ionic channels of the metal–organic framework (MOF) host were used to restrict electrolyte anions and acted as “highways” for fast Li+ transport. In addition, lower interfacial resistance between HKUST-1@IL-Li and electrodes was achieved by a wetted contact through open tunnels at the atomic scale. Excellent high thermal stability up to 300 °C and electrochemical properties are observed, including ionic conductivities and Li+ transference numbers of 0.68 × 10-4 S·cm-1 and 0.46, respectively, at 25 °C, and 6.85 × 10-4 S·cm-1 and 0.68, respectively, at 100 °C. A stable Li metal plating/stripping process was observed at 100 °C, suggesting an effectively suppressed growth of Li dendrites. The as-fabricated LiFePO4/HKUST-1@IL-Li/Li solid-state battery exhibits remarkable performance at high temperature with an initial discharge capacity of 144 mAh g-1 at 0.5 C and a high capacity retention of 92% after 100 cycles. Thus, the solid electrolyte in this study demonstrates promising applicability in lithium metal batteries with high performance under extreme thermal environmental conditions.


2018 ◽  
Vol 73 (6) ◽  
pp. 555-558 ◽  
Author(s):  
Zhi-Qing Peng ◽  
Rong Chen ◽  
Wen-Lin Feng

AbstractNovel luminescent materials Ca3-xSi2O7: xPr3+ were successfully prepared by the high-temperature solid-state method. The crystal structure, morphology, and optical spectrum were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectroscopy, respectively. The XRD patterns of the samples indicate that the crystal structure is monoclinic symmetry. The SEM shows that the selected sample has good crystallinity although its appearance is irregular and scalelike. The peak of the excitation spectrum of the sample is located at around 449 nm, corresponding to 3H4→3P2 transition of Pr3+. The peak of the emission spectrum of the sample is situated at around 612 nm which is attributed to 3P0→3H6 transition of Pr3+, and the colour is orange-red. The optimum concentration for Pr3+ replaced Ca2+ sites in Ca3Si2O7: Pr3+ is 0.75 mol%. The lifetime (8.48 μs) of a typical sample (Ca2.9925Pr0.0075)Si2O7 is obtained. It reveals that orange-red phosphors Ca3-xSi2O7: xPr3+ possess remarkable optical properties and can be used in white light emitting devices.


2017 ◽  
Vol 134 (20) ◽  
Author(s):  
Qian Yang ◽  
Haitao Yu ◽  
Lixian Song ◽  
Yajie Lei ◽  
Fengshun Zhang ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (46) ◽  
pp. 39762-39773 ◽  
Author(s):  
Yongfu Guo ◽  
Juan Deng ◽  
Junyan Zhu ◽  
Chao Zhou ◽  
Caiyun Zhou ◽  
...  

In order to improve the BET value and adsorption capacity of graphene oxide (GO), activated GO (GOKOH) was successfully prepared by high temperature solid state activation with KOH, and was used to remove the anionic dye orange IV from water.


ChemInform ◽  
2007 ◽  
Vol 38 (38) ◽  
Author(s):  
Wilhelm A. Meulenberg ◽  
Jose M. Serra

1992 ◽  
Vol 38 (11) ◽  
pp. 2455-2458
Author(s):  
S. K. Mehta ◽  
A. Kalsotra
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document