Polymer Matrix Composites. Effect of Temperature on Nonlinear Tensile Stress-Strain Behavior of CF/Epoxy Composites.

1996 ◽  
Vol 45 (5) ◽  
pp. 478-483 ◽  
Author(s):  
Keiji OGI ◽  
Nobuo TAKEDA ◽  
Satoshi KOBAYASHI ◽  
Dong-Yeul SONG
2020 ◽  
Vol 54 (27) ◽  
pp. 4269-4282
Author(s):  
E Boissin ◽  
C Bois ◽  
J-C Wahl ◽  
T Palin-Luc

The mechanical response of polymer matrix composites exhibits a temperature dependency even if the service temperature range is lower than the glass transition temperature of the polymer matrix. This dependency is mainly due to the temperature effect on the mechanical behaviour of the polymer matrix. However, the micro- and meso-structures driving the composite anisotropy and local stress distribution play an essential role regarding the effect of temperature on damage mechanisms specific to reinforced polymers. There are few data in the literature on the sensitivity to temperature of damage mechanisms and scenarios of polymer matrix composites regardless of loading type. In this paper, after a synthetic literature review of the effect of temperature on polymers and polymer composites, several complementary tests are proposed to analyse the temperature effect on damage mechanisms undergone by laminated composites under in-plane quasi static loadings. These tests are applied to an acrylic-thermoplastic composite reinforced by glass fibres in its service temperature range of –20℃ to 60℃. The results show that the testing temperature has a significant impact on the mechanical response and damage mechanisms of the composite material in the selected temperature range, which is markedly lower than the glass transition temperature (around 100℃). While the temperature rise generates a gradual decrease in matrix stiffness and strength, the increase in matrix ductility associated to the stress heterogeneity in the composite microstructure produces a rise in the transverse cracking threshold and removes this damage mode during quasi-static tensile tests when the temperature shifts from 15℃ to 40℃.


2021 ◽  
Author(s):  
JAVIER BUENROSTRO ◽  
HYONNY KIM ◽  
ROBERT K. GOLDBERG ◽  
TRENTON M. RICKS

The need for advanced material models to simulate the deformation, damage, and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. The purpose of this work is to characterize carbon epoxy fabrics for composite material models that rely on a large number of input parameters to define their nonlinear and 3D response; e.g. elastic continuum damage mechanics models or plasticity damage models [1, 2]. It is challenging to obtain large sets of experimental stress-strain curves, therefore, careful selection of physical experiments that exhibit nonlinear behavior is done to significantly reduce the cost of generating threedimensional material databases. For this work, plain weave carbon fabrics with 3k and 12k tows are manufactured by VARTM. Testing is done using MTS hydraulic test frames and 2D digital image correlation (DIC) to obtain experimental stress-strain curves for in-plane tension and shear as well as transverse shear. For cases where actual experimental data is either not available or difficult to obtain, the required model input is virtually generated using the NASA Glenn developed Micromechanics Analysis Method/Generalized Method of Cells (MAC/GMC) code. A viscoplastic polymer model is calibrated and utilized to model the matrix constituent within a repeating unit cell (RUC) of a plain weave carbon fiber fabric. Verification and validation of this approach is done using MAT213, a tabulated orthotropic material model in the finite element code LS-DYNA, which relies on 12 input stress-strain curves in various coordinate directions [2]. Based on the model input generated by the micromechanics analyses in combination with available experimental data, a series of coupon level verification and validation analyses are carried out using the MAT 213 composite model.


2001 ◽  
Vol 22 (5) ◽  
pp. 621-635 ◽  
Author(s):  
M. Tanoglu ◽  
S. H. McKnight ◽  
G. R. Palmese ◽  
J. W. Gillespie

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
N. Yu ◽  
Y. W. Chang

The present work studies the effects of the diameter of carbon nanotube (CNT) as well as CNT weight fraction on the uniaxial stress-strain behavior, stiffness, and strength of CNT-reinforced epoxy-matrix composites. The experimental results show that average Young's moduli of 5 wt%-CNT/epoxy composites with a CNT diameterD<20 nm andD=40∼60 nm are 4.56 GPa and 4.36 GPa, and the average tensile strengths are 52.89 MPa and 46.80 MPa, respectively, which corresponds to a percentage increase of 61.1%, 54.1%, 106%, and 82.3%, respectively. Two micromechanics models are employed and the predicted Young's moduli are benchmarked with the experimental data of MWCNT-reinforced epoxy-matrix composites.


2018 ◽  
Vol 193 ◽  
pp. 03028 ◽  
Author(s):  
Vladimir Smirnov ◽  
Evgeniy Korolev

Currently, thermoset-based polymer matrix composites are widely used in many areas of construction industry. Such composites demonstrate high compressive and flexural strength and are often characterized by high chemical stability under severe environmental conditions. One of the new promising areas of application of thermoset-based polymer matrix composites is the intumescent protective coating for metals; in normal conditions, such coatings can prevent the corrosion of metal constructions; during fire, expanded layer can prolong the time before critical failure. Water absorption is one of the primary characteristics of corrosion-protective materials; however, till now, there is only limited information about water absorption of multifunctional protective thermoset-based polymer matrix composites for intumescent coatings. In the present work, asymptotic values of water absorption of epoxy composites with polysiloxanes and fluorine-chlorine liquids are examined. The boundaries of control variables, within which the materials with required properties can be made, are determined. Silica, intercalated (expandable) graphite, and asbestos are used as fillers. Experiments were carried out in accordance with central composite experimental designs for full second-order regression models. It is shown that some admixtures can lead to notable decrease of water absorption.


2016 ◽  
Vol 88 (5) ◽  
pp. 510-519 ◽  
Author(s):  
Wei Fan ◽  
Dan-dan Guo ◽  
Jia-lu Li ◽  
Ying-ying Zhou ◽  
Liang Gong ◽  
...  

The effects of reinforcement architecture on the compressive behaviors of carbon fiber polymer matrix composites (CF-PMCs) under thermo-oxidative aging conditions were investigated. Samples of three-dimensional and four-directional braided carbon fiber/epoxy composites (BC) and laminated plain woven carbon fiber/epoxy composites (LC) were subjected to isothermal aging at 80℃, 100℃, 120℃ and 140℃ in air circulating ovens for various durations up to 1200 h. The process resulted in progressive deterioration of the matrix reins and fiber/matrix interfaces, in the form of chain scissions, weight loss and fiber/matrix debonding, which significantly led to the decrease of the compressive strength. In addition, the compressive strength retention rates of BC were higher than those of LC at the same aging conditions due to the differences of their reinforcement architecture. On the one hand, LC lost more weight than BC because the percentage of exposure of fiber ends to air in the LC samples was five times more than that in the BC samples. Moreover, the BC samples could resist the compressive load as an integral structure and did not show delamination damage as in the case of LC samples, although the resin was damaged and the adhesive force between fiber bundles and resin decreased after thermo-oxidative aging. Therefore, adopting the three-dimensional and four-directional braided preform as the reinforcement of CF-PMCs is an effective way to improve their compressive strength under thermo-oxidative aging conditions.


Sign in / Sign up

Export Citation Format

Share Document