scholarly journals Mechanical Properties of Lightweight Concrete Using Crushed Waste Expanded Polystyrene Melts Ingot

2007 ◽  
Vol 56 (3) ◽  
pp. 287-293
Author(s):  
Seiji FUKUSHIMA ◽  
Tetsuro KASAI
Author(s):  
Adeniran Jolaade ADEALA ◽  
Olugbenga Babajide SOYEM

Expanded polystyrene (EPS) wastes are generated from industries and post-consumer products. They are non-biodegradable but are usually disposed by burning or landfilling leading to environmental pollution. The possibility of using EPS as partial replacement for fine aggregates in concrete has generated research interests in recent times. However, since the physical and mechanical properties of EPS are not like those of conventional fine aggregates, this study is focussed on the use of EPS as an additive in concrete while keeping other composition (sand and granite) constant. Expanded polystyrene was milled, the bulk density of EPS was 10.57kg/m3 and particle size distributions were determined. Engineering properties of expanded polystyrene concrete were determined in accordance with BS 8110-2:1985. The result showed that the amount of expanded polystyrene incorporated in concrete influence the properties of hardened and fresh concrete. The compressive strengths of 17.07MPa with 5 % expanded polystyrene concrete at 28 days for example can be used as a lightweight concrete for partitioning in offices. Incorporating expanded polystyrene granules in a concrete matrix can produce lightweight polystyrene aggregate concrete of various densities, compressive strengths, flexural strengths and tensile strengths. In conclusion, this reduces environmental pollution, reduction in valuable landfill space and also for sustainability in construction companies


2015 ◽  
Vol 15 (1) ◽  
pp. 131-137 ◽  
Author(s):  
K. Buczkowska ◽  
T. Pacyniak

Abstract The aging granulate is to activate the blowing agent during the manufacturing process to granulate models can re-expand and shape the model of well-sintered granules, smooth surface and a suitable mechanical strength. The article presents the results of studies which aim was to determine the optimum time for aging pre-foamed granules for pre-selected raw materials. The testing samples were shaped in an autoclave, with constant parameters sintering time and temperature. Samples were made at 30 minute intervals. Models have been subjected to flexural strength and hardness.


2018 ◽  
Vol 926 ◽  
pp. 140-145 ◽  
Author(s):  
Małgorzata Mieszczak ◽  
Lucyna Domagała

The paper presents the results of tests conducted on two lightweight aggregate concretes made of new national Certyd artificial aggregate. This research is intended to first application of lightweight concrete to construct large-span post-tensioned slab. In addition to mechanical properties development, shrinkage and creep during 3 months of loading were tested. The obtained results are compared with theoretical results predicted by standard. Conducted tests indicated, that measured values of shrinkage and creep are significantly lower than predicted ones. This is promise for application of tested concrete in construction of post-tensioned slabs.


Author(s):  
Grigory Yakovlev ◽  
Jadvyga Keriene ◽  
Anastasiia Gordina ◽  
Irina Polyanskikh ◽  
Milan Bekmansurov

The paper presents possible ways of utilizing technogenic waste – fluorine anhydrite – by its use in production of dry mortars and piece goods from lightweight concrete with expanded polystyrene, as a organic filler, for low-rise construc-tion. The developed dry mortars are based on fluorine anhydrite binder and complex modifier comprising curing activator (sulfate or alkaline) and finely dispersed additive. The fluorine anhydrite-based compositions have improved physical and performance characteristics, including the improved strength and average density and reduced water absorption compared to the control composition. The developed lightweight anhydrite polystyrene concrete has the density grade of 700 kg/m3 and good vapor and gas permeability. The concrete is stabile while using and fire safe, because each granule of expanded poly-styrene is coated with anhydrite matrix, and has the strength sufficient for structural and heat insulating slabs and blocks. All mentioned compositions are eco-friendly and are in great demand for low-rise construction. Therefore the manufacturing of these compositions will consume a large amount of technogenic waste and will reduce the environmental load on the region where the waste is located.


2018 ◽  
Vol 250 ◽  
pp. 03002 ◽  
Author(s):  
Muhammad Sazlly Nazreen ◽  
Roslli Noor Mohamed ◽  
Mariyana Aida Ab Kadir ◽  
Nazry Azillah ◽  
Nazirah Ahmad Shukri ◽  
...  

Lightweight concrete (LWC) has been identified as an innovative technique for construction purposes. Lightweight concrete can be categorized into three different types which are no-fine aggregate concrete, lightweight aggregate concrete and aerated concrete. This paper studied the characteristic of the lightweight concrete in term of mechanical properties utilizing the palm oil clinker (POC) as lightweight aggregates. Two mixes of lightweight concrete were developed, namely as POCC100 and POCC50 where each mix utilized 100% and 50% of total replacement to fine and coarse aggregates, respectively. The fresh and hardened POC concrete was tested and compared to the normal concrete (NC). The hardened state of the concrete was investigated through density test, ultrasonic pulse velocity, cube compressive, splitting tensile, flexural, modulus of elasticity and Poisson's ratio. From density test results, POC falls into the category of lightweight concrete with a density of 1990.33 kg/m3, which are below than normal weight concrete density. The mechanical properties test results on POCC100 and POCC50 showed that the concrete compressive strength was comparable about 85.70% and 96% compared to NC specimen, respectively. For the flexural strength, POCC50 and POCC100 were comparable about 98% and 97% to NC specimen, respectively. While splitting tensile strength of POCC50 and POCC100 was only 0.6% and 4% lower than NC specimen, respectively. In terms of sustainability of solid waste management, the application of the POC in construction will reduce the redundant of by-products resulted from the palm oil industries. After undergoing various testing of concrete mechanical properties, it can be concluded that POC aggregates was compatible to be used in ligtweight concrete mix proportion.


Sign in / Sign up

Export Citation Format

Share Document