scholarly journals Characterization of lightweight concrete made of palm oil clinker aggregates

2018 ◽  
Vol 250 ◽  
pp. 03002 ◽  
Author(s):  
Muhammad Sazlly Nazreen ◽  
Roslli Noor Mohamed ◽  
Mariyana Aida Ab Kadir ◽  
Nazry Azillah ◽  
Nazirah Ahmad Shukri ◽  
...  

Lightweight concrete (LWC) has been identified as an innovative technique for construction purposes. Lightweight concrete can be categorized into three different types which are no-fine aggregate concrete, lightweight aggregate concrete and aerated concrete. This paper studied the characteristic of the lightweight concrete in term of mechanical properties utilizing the palm oil clinker (POC) as lightweight aggregates. Two mixes of lightweight concrete were developed, namely as POCC100 and POCC50 where each mix utilized 100% and 50% of total replacement to fine and coarse aggregates, respectively. The fresh and hardened POC concrete was tested and compared to the normal concrete (NC). The hardened state of the concrete was investigated through density test, ultrasonic pulse velocity, cube compressive, splitting tensile, flexural, modulus of elasticity and Poisson's ratio. From density test results, POC falls into the category of lightweight concrete with a density of 1990.33 kg/m3, which are below than normal weight concrete density. The mechanical properties test results on POCC100 and POCC50 showed that the concrete compressive strength was comparable about 85.70% and 96% compared to NC specimen, respectively. For the flexural strength, POCC50 and POCC100 were comparable about 98% and 97% to NC specimen, respectively. While splitting tensile strength of POCC50 and POCC100 was only 0.6% and 4% lower than NC specimen, respectively. In terms of sustainability of solid waste management, the application of the POC in construction will reduce the redundant of by-products resulted from the palm oil industries. After undergoing various testing of concrete mechanical properties, it can be concluded that POC aggregates was compatible to be used in ligtweight concrete mix proportion.

2013 ◽  
Vol 857 ◽  
pp. 105-109
Author(s):  
Xiu Hua Zheng ◽  
Shu Jie Song ◽  
Yong Quan Zhang

This paper presents an experimental study on the permeability and the pore structure of lightweight concrete with fly ash, zeolite powder, or silica fume, in comparison to that of normal weight aggregate concrete. The results showed that the mineral admixtures can improve the anti-permeability performance of lightweight aggregate concrete, and mixed with compound mineral admixtures further more. The resistance to chloride-ion permeability of light weight concrete was higher than that of At the same strength grade, the anti-permeability performance of lightweight aggregate concrete is better than that of normal weight aggregate concrete. The anti-permeability performance of LC40 was similar to that of C60. Mineral admixtures can obviously improve the pore structure of lightweight aggregate concrete, the total porosity reduced while the pore size decreased.


2018 ◽  
Vol 926 ◽  
pp. 140-145 ◽  
Author(s):  
Małgorzata Mieszczak ◽  
Lucyna Domagała

The paper presents the results of tests conducted on two lightweight aggregate concretes made of new national Certyd artificial aggregate. This research is intended to first application of lightweight concrete to construct large-span post-tensioned slab. In addition to mechanical properties development, shrinkage and creep during 3 months of loading were tested. The obtained results are compared with theoretical results predicted by standard. Conducted tests indicated, that measured values of shrinkage and creep are significantly lower than predicted ones. This is promise for application of tested concrete in construction of post-tensioned slabs.


1986 ◽  
Vol 13 (6) ◽  
pp. 741-751 ◽  
Author(s):  
R. Basset ◽  
S. M. Uzumeri

This paper summarizes an experimental investigation into the behaviour of high strength sand – lightweight concrete columns confined with rectangular ties. Fifteen reinforced and three unreinforced specimens were tested under monotonically increasing axial compression. Variables considered in this study were the longitudinal steel distribution and tie configuration, the tie steel spacing, the amount of tie steel, and the amount of longitudinal steel.The results indicated that unconfined high-strength lightweight aggregate concrete is a brittle material. The addition of lateral confining steel significantly improved the behaviour of this material, with a large amount of lateral steel resulting in very ductile behaviour. The tie configuration and resulting distribution of longitudinal steel contributed significantly to the confinement of concrete, with well-distributed steel resulting in improved behaviour. The ratio of specimen to cylinder concrete strength was observed to be 0.98, which is much higher than the commonly assumed value of 0.85.The test results were compared with results from selected theoretical confinement models. Based on the results of this investigation, existing models for concrete confinement give unconservative results for high-strength lightweight aggregate concrete and overestimate the ductility that can be achieved with this material. Key words: columns, confinement, ductility, high-strength concretes, lightweight aggregate concretes, reinforcement, stress–strain relationships, tests, ties, toughness.


2011 ◽  
Vol 117-119 ◽  
pp. 1302-1305
Author(s):  
Ning Liao ◽  
Hong Zhi Cui

This research is one part of preliminary work for integrated structural-functional energy storage concrete by using porous artificial lightweight aggregate and phase change material. Lightweight aggregate concrete (LWAC) has been applied more and more extensively in recent years, but high water absorption of porous artificial lightweight aggregate (LWA) is inconvenient for LWAC production. In order to improve LWA application, in this paper, two aspects of lightweight aggregate (LWA) study have been carried out, namely, a) LWA surface modification. The effects of different concentration of surface modifier on water absorption of modified LWA were studied. b) Mechanical properties of lightweight aggregate concrete made of the unmodified and modified LWAs Through comparing the water absorption of unmodified and modified LWAs, it can be known that the surface modification for LWA can reduce the water absorption obviously. The three kinds of lightweight concrete possess nearly same strength at 7-day and, at 28-day, the strength of LWAC using 1:20 modified LWA is highest and that of LWAC using 1:5 modified LWA is lowest. 28 days compressive strength of LWAC using 1:20 modified LWA could be up to 46.1MPa.


Author(s):  
Christopher Collins ◽  
Saman Hedjazi

In the present study, a non-destructive testing method was utilized to assess the mechanical properties of lightweight and normal-weight concrete specimens. The experiment program consisted of more than a hundred concrete specimens with the unit weight ranging from around 850 to 2250 kg/m3. Compressive strength tests were performed at the age of seven and twenty eight days. Ultrasonic Pulse Velocity (UPV) was the NDT that was implemented in this study to investigate the significance of the correlation between UPV and compressive strength of lightweight concrete specimens. Water to cement ratio (w/c), mix designs, aggregate volume, and the amount of normal weight coarse and fine aggregates replaced with lightweight aggregate, are the variables in this work. The lightweight aggregate used in this study, Poraver®, is a product of recycled glass materials. Furthermore, the validity of the current prediction methods in the literature was investigated including comparison between this study and an available expression in the literature on similar materials, for calculation of mechanical properties of lightweight concrete based on pulse velocity. It was observed that the recently developed empirical equation would better predict the compressive strength of lightweight concrete specimens in terms of the pulse velocity.


2015 ◽  
Vol 749 ◽  
pp. 337-342 ◽  
Author(s):  
Muhammad Aslam ◽  
Payam Shafigh ◽  
Mohd Zamin Jumaat

Structural lightweight aggregate concrete offers several benefits as compared to the normal weight concrete. Most common methods of producing structural lightweight concrete is by using artificial lightweight aggregates. However, the cost of the production of artificial lightweight aggregates is high due to energy and raw materials consumption. The use of waste and by-product materials as lightweight aggregate in concrete can provide a better solution to reducing the negative impact of the concrete industry. This paper reports an investigation to produce structural lightweight aggregate concrete by utilizing the locally available solid waste materials, namely oil palm shell (OPS) and oil-palm-boiler clinkers (OPBC) as coarse lightweight aggregates. Two different mix proportions were studied. In the first concrete mix, just OPS was used as coarse aggregate. However, 40% of OPS (by volume) of the first mix was replaced with OPBC in the second mix. The test results showed that by replacing OPS with OPBC, it directly affects the characteristics of the lightweight concrete. The 28-days compressive strength of the blended coarse lightweight aggregate concrete was significantly increased compared to OPS concrete.


2019 ◽  
Vol 27 (2) ◽  
pp. 64-73
Author(s):  
Sajjad abdulameer Badar ◽  
Laith Shakir Rasheed ◽  
Shakir Ahmed Salih

This paper aims to investigate the structural behavior of reinforced lightweight concrete beams. Attapulgite aggregate and crushed clay brick aggregate were used as coarse lightweight aggregate to produce structural lightweight aggregate concrete with 25 Mpa and 43.6 Mpa cube compressive strength and 1805 Kg/m3 and 1977 Kg/m3 oven dry density respectively. The result of reinforced lightweight concrete beams compared with reinforced normal weight concrete beams, which have 50.5 Mpa cylinder compressive strength and 2317 Kg/m3 oven dry density. For each type of concrete two reinforced concrete beams with (1200 mm length × 180 mm height × 140 mm width), one of them tested under symmetrical two-points load STPL (a/d = 2.2) and another one tested under one-point load OPL (a/d=3.3) at 28 days. The experimental program shows that a structural lightweight aggregate concrete can be produced by using Attapulgite aggregate with 25 MPa cube compressive strength and 1805 Kg/m3 oven dry density and by using crushed clay brick aggregate with 43.6 MPa cube compressive strength and 1977 Kg/m3 oven dry density. The weight of Attapulgite aggregate concrete and crushed clay bricks aggregate concrete beam specimens were lower than normal weight aggregate concrete beams by about 20.56% and 13.65% respectively at 28 days.  As for the ultimate load capacities of beam specimens, the ultimate load of Attapulgite aggregate concrete beams tested under STPL were lower than that of crushed clay bricks aggregate concrete beams and normal weight aggregate concrete beams by about 4.85% and 5% respectively. While the ultimate load capacities of reinforced Attapulgite concrete beams tested under OPL were lower than that of reinforced crushed clay bricks aggregate concrete beams and reinforced normal weight aggregate concrete beams by about 10.3% and 10.5% respectively. Finally, Attapulgite aggregate concrete and crushed clay bricks aggregate concrete showed ductility and toughness less than that of Normal weight aggregate concrete.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 948
Author(s):  
Mugahed Amran ◽  
Yeong Huei Lee ◽  
Nikolai Vatin ◽  
Roman Fediuk ◽  
Shek Poi-Ngian ◽  
...  

Foam concrete (FC) serves as an efficient construction material that combines well thermal insulation and structural properties. The studies of material characteristics, including the mechanical, physical, rheological, and functional properties of lightweight concrete, have been conducted rigorously. However, a lack of knowledge on the design efficiency of reinforced FC (RFC) was found in current research trends, compared to reinforced lightweight aggregate concrete. Therefore, this paper presents a review of the performance and adaption in structures for RFC. According to the code specifications, the feasibility investigation was preliminarily determined in structural use through the summary for the mechanical properties of FC of FC’s mechanical properties. For reinforced concrete design, a direct method of reduction factors is introduced to design lightweight aggregate concrete, which is also suggested to be adapted into a lightweight FC design. It was found that flexural shear behavior is a more complex theoretical analysis than flexure. However, a reduction factor of 0.75 was recommended for shear, torsion, and compression; meanwhile, 0.6 for flexural members. Serviceability limit states design should be applied, as the crack was found predominant in RFC design. The deflection controls were recommended as 0.7 by previous research. Research on RFC’s compression members, such as a column or load load-bearing wall, were rarely found. Thus, further study for validating a safe design of RFC applications in construction industries today is highly imperative.


2019 ◽  
Vol 9 (4) ◽  
pp. 767 ◽  
Author(s):  
Seungtae Lee

The adhered mortars in recycled aggregates (RA) may lower the performance of the concrete, by for instance reducing its strength and durability, and by cracking. In the present study, the effect of nylon fiber (NF) on the permeability as well as on the mechanical properties of concrete incorporating 100% RA was experimentally investigated. Concrete was produced by adding 0, 0.6 and 1.2 kg/m3 of NF and then cured in water for a predetermined period. Measurements of compressive and split tensile strengths, ultrasonic pulse velocity and total charge passed through concrete were carried out, and the corresponding test results were compared to those of concrete incorporating crushed stone aggregate (CA). In addition, the microstructures of 28-day concretes were examined by using the FE-SEM technique. The test results indicated that recycled coarse aggregate concrete (RAC) showed a lower performance than crushed stone aggregate concrete (CAC) because of the adhered mortars in RA. However, it was obvious that the addition of NF in RAC mixes was much more effective in enhancing the performance of the concretes due to the crack bridging effect from NF. In particular, a high content of NF (1.2 kg/m3) led to a beneficial effect on concrete properties compared to a low content of NF (0.6 kg/m3) with respect to mechanical properties and permeability, especially for RAC mixes.


Sign in / Sign up

Export Citation Format

Share Document