scholarly journals Development of Crystal Orientation Measurement Technique for Ni-Base Superalloy Turbine Blade

2019 ◽  
Vol 68 (4) ◽  
pp. 346-350
Author(s):  
Tomoaki YUNOMURA ◽  
Takayuki KURIMURA
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3315
Author(s):  
Liuxi Cai ◽  
Yao He ◽  
Shunsen Wang ◽  
Yun Li ◽  
Fang Li

Based on the establishment of the original and improved models of the turbine blade, a thermal–fluid–solid coupling method and a finite element method were employed to analyze the internal and external flow, temperature, and thermal stress of the turbine blade. The uneven temperature field, the thermal stress distribution characteristics of the composite cooling turbine blade under the service conditions, and the effect of the thickness of the thermal barrier coating (TBC) on the temperature and thermal stress distributions were obtained. The results show that the method proposed in this paper can better predict the ablation and thermal stress damage of turbine blades. The thermal stress of the blade is closely related to the temperature gradient and local geometric structure of the blade. The inlet area of the pressure side-platform of the blade, the large curvature region of the pressure tip of the blade, and the rounding between the blade body and the platform on the back of the blade are easily damaged by thermal stress. Cooling structure optimization and thicker TBC thickness can effectively reduce the high temperature and temperature gradient on the surface and inside of the turbine blade, thereby reducing the local high thermal stress.


2005 ◽  
Vol 105 ◽  
pp. 309-314 ◽  
Author(s):  
M. Ostafin ◽  
Jan Pospiech ◽  
Robert A. Schwarzer

The objectives of this investigation are structural effects in electrolytic copper sheets which are caused by the change of the direction of rolling. Unidirectional, reverse as well as cross-rolling at 90° respectively at 45° to the precedent rolling direction have been applied down to final deformations as low as 80% reduction in thickness. Texture has been determined by ACOM (Automated Crystal Orientation Measurement, “Automated EBSD”) in the SEM and by X-ray pole figure measurement. The main benefits of ACOM are a high spatial resolution which enables the investigation of texture gradients from the mid plane to the surface of the sheet, and the visualization of the microstructure by crystal orientation mapping. In addition to local texture, statistical distributions of misorientations across grain boundaries and of S grain boundaries have been derived from the individual grain orientation data. The change of the path of plastic deformation induces a destabilization of the substructure which is formed during the primary step of unidirectional rolling. A distinct change of texture is found depending on the deformation process. In cross rolling, the b fiber changes into the unstable b90 fiber which almost disappears with progressive deformation along the new rolling direction.


Sign in / Sign up

Export Citation Format

Share Document