scholarly journals Control of heat exchangers in series using neural network predictive controllers

2020 ◽  
Vol 13 (1) ◽  
pp. 41-48
Author(s):  
Anna Vasičkaninová ◽  
Monika Bakošová ◽  
Alajos Mészáros

AbstractThe paper reveals three applications of neural network predictive control (NNPC) to a system of four heat exchangers (HEs) in series with counterflow configuration to save energy expressed by cooling water in the system of HEs cooling the distillation product. Neural networks (NNs) are used at first in conventional NNPC and subsequently, neural network predictive controllers (NNPCLs) are employed as a master controller in a cascade control, and as a feedback controller in the control system with disturbance measurement. Neural-network-predictive-control-based (NNPC-based) feedback control systems are compared with PI controller based feedback control loop. Series of simulation experiments were done and the results showed that using NNPC-based cascade control reduced cooling water consumption. This control system also significantly reduced the settling time and overshoots in the control responses and provided the best assessed integral quality criteria compared to other control systems. NNPC-based cascade control can also be interesting for industrial use. Generally, simulation results proved that NNPC-based control systems are promising means for the improvement of HEs control and achievement of energy saving.

2014 ◽  
Vol 709 ◽  
pp. 281-284 ◽  
Author(s):  
Yao Wu Tang ◽  
Xiang Liu

Chain type coal-fired hot blast furnace boiler has a strong coupling, large delay, large inertia characteristics. Control effect of control method of mathematic modeling method and the classical routine of it is very difficult to produce the ideal. The predictive control theory combined with neural network theory. Through the model correction and rolling optimization control method of the system is good to overcome the effects of model error and time-varying process. The experimental results showed that neural network predictive control system is improved effectively the static precision and dynamic characteristic. It has better practicability of boiler temperature of this kind of large time delay system.


2021 ◽  
Vol 40 (1) ◽  
pp. 65-76
Author(s):  
Peng Zhou ◽  
Junxing Tian ◽  
Jian Sun ◽  
Jinmei Yao ◽  
Defang Zou ◽  
...  

According to the characteristics of the tool hydraulic control system of the double cutters experimental pplatform, intelligent control methodology forecasted by fuzzy neural network is introduced into the control system. The two level control systems of fuzzy neural network predictive control and fuzzy control are designed. The fuzzy neural network predictive controller mainly completes the analysis and control of the speed and pressure in the tool hydraulic system. The speed control signal and pressure control signal from the first level are output to the fuzzy controller. Then, through logical reasoning, the control signal is output and the actuator is driven by the fuzzy controller to complete the control function of the tool system. In this paper, compared with the traditional PID control, the fuzzy neural network predictive control technology has better control accuracy, dynamic response performance and steady-state accuracy. The fuzzy neural network predictive control technology can be used to control the tool hydraulic system of Tunnel Boring Machine.


2011 ◽  
Vol 179-180 ◽  
pp. 128-134
Author(s):  
Lei Shi ◽  
Xing Cheng Wang

Neural network theory is widely applied to predictive control system because of its superiority in dealing with nonlinearities therein. Meanwhile, various algorithms for neural network predictive control have been put forward..The paper investigates the application of neural network-based control in nonlinear system. Especially, some current important nerual network-based controls are remarked and the developments are prospected.


Author(s):  
Jingjun Zhang ◽  
Ercheng Wang ◽  
Ruizhen Gao

The piezoelectric smart structure is a force-electric coupling structure, and piezoelectric patches can not be patched ideally, so it is difficult to build the accurate mathematical model of piezoelectric smart structure. The traditional vibration control methods depend on the structural mathematical model, and the control result is unsatisfactory. Considering this problem, this paper introduces the nonlinear generalized predictive control algorithm based on neural network predictive model into piezoelectric smart structure. Because of the difficulties of building the mathematical model and extracting dynamic data from experiment, the finite element software (ANSYS) is employed to analyze and obtain the dynamic response data of piezoelectric smart structure through modal analysis and transient analysis. Neural network predictive model of structure is built through off-line training on the basis of the data. The nonlinear generalized predictive control based on neural network has a better ability to solve complex nonlinear problem. Then the author introduces the Neural Network Based System Identification Toolbox (NNSYSID) and Neural Network Based Control System Design Toolkit (NNCTRL), which are two special toolboxes for designing neural network control system and can save lots of time for designers who can commit themselves to sixty-four-dollar question. At last, the author shows the method through a case. A cantilever beam which surface is boned piezoelectric patches used for sensor and actuator respectively is analyzed by ANSYS and controled by the neural network predictive control algorithm on the platform of NNSYSID and NNCTRL. This is a simple and effective method for designers to solve the vibration control problem of piezoelectric smart structure.


ChemInform ◽  
2014 ◽  
Vol 45 (30) ◽  
pp. no-no
Author(s):  
S. A. Hajimolana ◽  
S. M. Tonekabonimoghadam ◽  
M. A. Hussain ◽  
M. H. Chakrabarti ◽  
N. S. Jayakumar ◽  
...  

2021 ◽  
Vol 92 ◽  
pp. 79-93
Author(s):  
N. G. Topolsky ◽  
◽  
S. Y. Butuzov ◽  
V. Y. Vilisov ◽  
V. L. Semikov ◽  
...  

Introduction. It is important to have models that adequately describe the relationship between the integral indicators of the functioning of the system with the particular indicators of the lower levels of management in complex control systems, in particular in RSChS. Traditional approaches based on normative models often turn out to be untenable due to the impossibility of covering all aspects of the functioning of such systems, as well as due to the high variability of the environment and the values of the set of target indicators. Recently, adaptive machine-learning models have proven to be productive, allowing build stable and adequate models, one of the variants of which is artificial neural networks (ANN), based on the solution of inverse problems using expert estimates. The relevance of the study lies in the development of compact models that allow assessing the effectiveness of the functioning of complex multi-level control systems (RSChS) in emergency situations, developing according to complex scenarios, in which emergencies of various types can occur simultaneously. Goals and objectives. The purpose of the article is to build and test the technology for creating compact models that are adequate to the system of indicators of the functioning of hierarchically organized control systems. This goal gives rise to the task of choosing tools for constructing the necessary models and sources of initial data. Methods. The research tools include methods for analyzing hierarchical systems, mathematical statistics, machine learning methods of ANN, simulation modeling, expert assessment methods, software systems for processing statistical data. The research is based on materials from domestic and foreign publications. Results and discussion. The proposed technology for constructing a neural network model of the effectiveness of the functioning of complex hierarchical systems provides a basis for constructing dynamic models of this type, which make it possible to distribute limited financial and other resources during the operation of the system according to a complex scenario of emergency response. Conclusion. The paper presents the results of solving the problem of constructing an ANN and its corresponding nonlinear function, reflecting the relationship between the performance indicators of the lower levels of the hierarchical control system (RSChS) with the upper level. The neural network model constructed in this way can be used in the decision support system for resource management in the context of complex scenarios for the development of emergency situations. The use of expert assessments as an information basis makes it possible to take into account numerous target indicators, which are extremely difficult to take into account in other ways. Keywords: emergency situations, hierarchical control system, efficiency, artificial neural network, expert assessments


2012 ◽  
pp. 45-52 ◽  
Author(s):  
E. Fitz-Rodríguez ◽  
M. Kacira ◽  
F. Villarreal-Guerrero ◽  
G.A. Giacomelli ◽  
R. Linker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document