scholarly journals Seasonal distribution of multiclass pesticide residues in the surface waters of northwest Croatia

2021 ◽  
Vol 72 (4) ◽  
pp. 280-288
Author(s):  
Sanja Fingler ◽  
Gordana Mendaš ◽  
Marija Dvoršćak ◽  
Sanja Stipičević ◽  
Želimira Vasilić ◽  
...  

Abstract As part of our OPENTOX project, we evaluated the incidence and mass concentrations of multiclass pesticide residues in 23 river/stream water samples collected in urban and agricultural areas of northwest Croatia at various points of the pesticide application season in 2015. The study included 16 compounds of five herbicide classes and seven compounds of three insecticide classes. Pesticide residues were accumulated from water by solid-phase extraction and analysed using high performance liquid chromatography with UV-diode array detection and/or gas chromatography-mass spectrometry. Herbicide residues were more common than the insecticide ones, and, as expected, they peaked in the middle of the application season. Metolachlor showed the highest concentrations and was found in 91 % of all samples, followed by terbuthylazine, found in 70 % of the samples. The highest total mass concentration of detected pesticides was measured in the water samples of the Krapina (3992 ng/L) and Sutla (3455 ng/L) collected in rural areas with intensive agriculture. Our findings strongly speak in favour of continued monitoring of surface waters and possibly extending the list of priority water pollutants.

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2869 ◽  
Author(s):  
Iván Taima-Mancera ◽  
Priscilla Rocío-Bautista ◽  
Jorge Pasán ◽  
Juan Ayala ◽  
Catalina Ruiz-Pérez ◽  
...  

Four metal-organic frameworks (MOFs), specifically UiO-66, UiO-66-NH2, UiO-66-NO2, and MIL-53(Al), were synthesized, characterized, and used as sorbents in a dispersive micro-solid phase extraction (D-µSPE) method for the determination of nine pollutants of different nature, including drugs, phenols, polycyclic aromatic hydrocarbons, and personal care products in environmental waters. The D-µSPE method, using these MOFs as sorbents and in combination with high-performance liquid chromatography (HPLC) and diode-array detection (DAD), was optimized. The optimization study pointed out to UiO-66-NO2 as the best MOF to use in the multi-component determination. Furthermore, the utilization of isoreticular MOFs based on UiO-66 with the same topology but different functional groups, and MIL-53(Al) to compare with, allowed us for the first time to evaluate the influence of such functionalization of the ligand with regards to the efficiency of the D-µSPE-HPLC-DAD method. Optimum conditions included: 20 mg of UiO-66-NO2 MOF in 20 mL of the aqueous sample, 3 min of agitation by vortex and 5 min of centrifugation, followed by the use of only 500 µL of acetonitrile as desorption solvent (once the MOF containing analytes was separated), 5 min of vortex and 5 min of centrifugation. The validation of the D-µSPE-HPLC-DAD method showed limits of detection down to 1.5 ng·L−1, average relative recoveries of 107% for a spiked level of 1.50 µg·L−1, and inter-day precision values with relative standard deviations lower than 14%, for the group of pollutants considered.


Sign in / Sign up

Export Citation Format

Share Document