scholarly journals Effect of Brachystegia Eurycoma Flour Addition on the Physicochemical Properties of Whole Millet Flour and the Sensory Attributes of its Gluten-Free Bread

2021 ◽  
Vol 25 (1) ◽  
pp. 43-52
Author(s):  
Emmanuel Anyachukwu Irondi ◽  
Yunus Temitayo Imam ◽  
Emmanuel Oladipo Ajani

Abstract This study evaluated the effect of addition of Brachystegia eurycoma flour (BEF), a natural source of hydrocolloids, on the physicochemical properties of whole millet flour (WMF) and the sensory attributes of its gluten-free bread. BEF and sodium carboxylmethyl cellulose (a reference hydrocolloid) were added to WMF at 1.5 and 3% proportions, and breads were baked from the blends. Wheat flour (100%CWF) bread served as the control. Amylose level decreased significantly (p < 0.05), while water absorption capacity, peak and final viscosities of the blends increased with increasing proportion of BEF. The 100%CWF bread had better sensory qualities than WMF-BEF breads. Hence, BEF improved the physicochemical properties of WMF-BEF blend, but did not alter the sensory qualities of its gluten-free bread.

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 228
Author(s):  
Marina Schopf ◽  
Katharina Anne Scherf

Vital gluten is often used in baking to supplement weak wheat flours and improve their baking quality. Even with the same recipe, variable final bread volumes are common, because the functionality differs between vital gluten samples also from the same manufacturer. To understand why, the protein composition of ten vital gluten samples was investigated as well as their performance in a microbaking test depending on the water content in the dough. The gluten content and composition as well the content of free thiols and disulfide bonds of the samples were similar and not related to the specific bread volumes obtained using two dough systems, one based on a baking mixture and one based on a weak wheat flour. Variations of water addition showed that an optimal specific volume of 1.74–2.38 mL/g (baking mixture) and 4.25–5.49 mL/g (weak wheat flour) was reached for each vital gluten sample depending on its specific water absorption capacity.


2020 ◽  
Vol 14 (4) ◽  
Author(s):  
S. Mykolenko ◽  
D. Zhygunov ◽  
T. Rudenko

The technological properties of full-fat amaranth flour depend on the varietal characteristics of the Ukrainian amaranth grain and differ significantly from amaranth flour from flakes and amaranth flour from groats. In comparison with patent wheat flour, amaranth flour has a lower moisture content, higher water absorption capacity and  autolytic  activity. The variety of Amaranthus hypochondriacus significantly effects on the whiteness of full-fat flours, the lightest of which is obtained from the grain cultivar Kharkivsky-1. A higher fat, protein, and fibre content makes amaranth flours more acidic. The water absorption capacity of the flours shows positive correlation with their autolytic activity (+0.885). The acidity negatively correlates with the moisture (-0.939) and whiteness  (-0.814)  of the flours. Using amaranth flour of the different types to replace 5, 15, and 25% of patent wheat flour when making bread increases its specific volume and crumb porosity and decreases its shape stability. The positive correlation of the overall quality of the bread samples under study with their specific volume (+0.540) and the negative correlation with the acidity (- 0.685) are statistically significant. The shape stability negatively correlates with the porosity (-0.598), and the latter positively correlates with the specific volume (+0.533). The use of full-fat amaranth flour increases the specific      volume       and      porosity      of      bread      by      1.1–1.3    and 1.1 times respectively. The use of defatted flour from flakes leads to a 1.3–1.9 -fold increase in the specific volume and to a 1.1–1.2 -old increase  in the porosity. Incorporation of amaranth flour from groats allows increasing the specific volume and porosity of bread by 1.3–1.5 and 1.1–1.2 times respectively. The bread samples with 25% of all amaranth flours considered and with 15% of full-fat flour of the Liera variety  have  the lowest consumer characteristics. It has been proved that using 5–15% of full-fat flour from the amaranth grain of variety Kharkivsky-1 and defatted flour from flakes and groats (by-products of processing amaranth grain into oil) improves the quality and nutritional value of bread.


Food Research ◽  
2020 ◽  
Vol 4 (S2) ◽  
pp. 24-30
Author(s):  
N. Zainol ◽  
S. Subramanian ◽  
A.S. Adnan ◽  
N.H. Zulkifli ◽  
A.A.M. Zain ◽  
...  

The market of composite flour is growing as consumer nowadays choosing a healthy diet as personal preference. The suitability of the composite flour for use as intermediate or finish food ingredients highly depends on its physicochemical properties and its nutritional value. In this study, four types of local fruit crops (particularly their seeds) namely rambutan, cempedak, durian and nangka were dried and ground into powder form. The physicochemical properties such as bulk density, pH, water absorption capacity (WAC), oil absorption capacity (OAC), foam stability (FS), foam capacity (FC) as well as gelatinization properties of these composite flour were studied. Mineral content and heavy metal analytes were also determined. Results for bulk density from the least to the higher amount was 0.54±0.00 g/mL, 0.57±0.00 g/mL, 0.58±0.01 g/mL, 0.66±0.00 g/mL , 0.70±0.00 g/mL and 0.72±0.00 g/mL for rambutan flour, cempedak flour, tapioca flour, nangka flour, wheat flour and durian flour, respectively. Both cempedak flour and nangka flour showed the lowest pH value (5.72±0.01, 5.73±0.00), followed by rambutan flour and durian flour (6.67±0.00, 6.90±0.00) which similar to that tapioca flour and wheat flour (6.65±0.1, 6.08±0.0), respectively. Rambutan flour, cempedak flour and wheat flours showed the highest value in% of foam stability meanwhile these composite flours showed the lowest value in% of foam capacity. Results for water absorption capacity (WAC) and oil absorption capacity (OAC) in a range of 6% to 42% and 8% to 12% respectively, however, durian flour obtained the highest value for WAC while the value for OAC was the lowest. All of the composite flour possesses gelling properties at 13% concentration except for cempedak flour which completely gels at 20% of concentration. Rambutan flour showed the highest mineral analyte particularly in Zinc (107.19±0.17) and Copper (14.22±0.27) followed by nangka flour [Zinc (64.20±0.32) and Copper (10.40±0.12)] and durian flour [Zinc (52.38±0.42) and Copper (7.97±0.05)]. Level of heavy metal toxicity was under risk for all types of composite flour.


2021 ◽  
pp. 68-73

The article discusses the analysis of studies on the effect of activated water on the preparation of wheat grains grown in an arid climate for high-quality flour grinding. The aim of the study was to study the effect of the use of activated water on the rheological properties of type IV wheat flour grown in arid climates, in the preparation of wheat flour for grinding. In a study of the strength of the gluten framework and the rheological properties of the dough increased by increasing the water absorption capacity of flour when using activated water at 80 and 100 Hz when preparing local wheat grains with low baking properties in a dry climate for grinding flour


Author(s):  
A. Ihemeje ◽  
O. Ukauwa ◽  
C.C. Ekwe

Effect of cooking and germination on physiochemical and sensory attributes of African walnut were investigated. Result proved that the protein (14.90%) carbohydrates (15.39%) fat (45.84%) ash (3.5%) and fibre (1.17%) contents of the raw samples were increased by germination but subsequently decreased as germination progresses. Cooking was found to be more effective in reduction of antinutrients than germination thereby leading to enhanced bioavailability of most essential minerals (calcium, magnesium, sodium, phosphorus etc). Results also indicate significant (P<0.05) improvement on the functional properties (water absorption capacity, oil absorption capacity, ) of the raw sample by cooking and germination. Evaluation of sensory attributes showed that cooked walnut was most preferred to germinated and boiled walnut in terms of taste, after taste and general acceptability.


2020 ◽  
Vol 20 (1) ◽  
pp. 23-30
Author(s):  
D. Zhygunov ◽  
I. Toporash ◽  
Y. Barkovska ◽  
Y. Yehorshyn

Practice of processing of new types of wheat is widespread in the world, but it’s almost unknown in the CIS countries, because selection for many years aimed at obtaining exclusively high protein bread-baking varieties of wheat. But not known what technological properties of flour possesses from wheat types of a special intended purpose, and that it’s necessary to consider when conducting varietal grinding of such raw material. The alveograph measures the viscoelastic properties of wheat flour. According to the standard method ISO 27971 the amount of added water is initially calibrated directly as a percentage of dough moisture. This method is designed for standard types of flour and may not be suitable for evaluating the rheological properties of flour with different water absorption capacity. To find out the properties of new types, standard methods may not be suitable, therefore, methods should be studied and adapted if necessary. To investigate the relationship between water absorption capacity and viscoelastic properties of the dough, alveograph tests were conducted on eight flour samples obtained from different types of wheat. The studies were performed using a standard test (calculated for WAC of flour = 53%) and a test with adaptive moistening, for which the amount of added water was calculated according to the water absorption capacity (WAC) of the flour, which was determined on mixolab. Flour from common red wheat (Kuyalnik) is the benchmark of common bakery wheat and according to the results of standard alveogram has the highest strength (W) and elasticity (Ie) of all samples. The wheat with W= 43910-4J corresponds to strong wheat (W>20010-4J). The addition of water in accordance with the WAC softens the dough W=26010-4J, but it`s still optimal for bakery purposes. The results of studies of common black wheat (Chornobrova) correlate with the results of wheat Kuyalnik, but the baking properties were worse. For waxy wheat (Sofiika), the test on the alveograph with adaptive moistening gave her more water, which led to an increase in elasticity (Ie=52.4%) and extensibility (L=77 mm) and became closer to an optimal P/L ratio (0.74) that was more suitable for the bake bread (0.8-1.2). Flour from soft wheat is expected to have average baking properties (W>15510-4J), but in all respects it is slightly better than Chornobrova. Adaptive moistening, unlike the sharp deterioration of rheological characteristic of Chornobrova, does not alter the properties of the Belyava and Oksana dough, due to the low WAC value (53.8% and 54.0%). Spelt wheat flour has low strength(W<6210-4J), lower P/L ratio 0.25-0.50 and unsuitable (fluid, sticky) test consistency. All samples of Spelt with adaptive moistening showed similar result – its decrease of P indicator and increase of extensibility (L). In a result we observe decrease of P/L ratio to 0.18-0.29, thus indicating extremely extensible doughs with very little elasticity. For all samples, with adaptive moistening a decrease in resistance to extension (P) and an increase in extensibility (L) are observed, in a result of the decline in the P/L ratio. Adaptive moistening for common wheat (Kuyalnik) will show the change in P and L and the P/L ratio in real cooking conditions, since the standard alveograph test assesses only the potential of wheat. By adjusting the amount of water, we can achieve optimal dough characteristics for different products. For soft and spelt wheat, adaptive moistening is not necessary, because the WAC and moisture content are the same, and according to the standard of the experiment. It is advisable to carry out an alveograph test with adapted moistening for waxy wheat, that giving it more water, which leads to an increase in elasticity and extensibility, as a consequence, and leading to an optimal P/L ratio that was more suitable for the bake bread (0.8-1.2). Based on its special application, it is necessary to develop specific recommendations for determining its properties on the alveograph.


Author(s):  
Feumba Dibanda Romelle ◽  
Panyoo Akdowa Emmanuel ◽  
Tiencheu Bernard ◽  
Aswhini Rani ◽  
Mbofung Carl Moses

Aims: To investigate the dough rheological properties as well as physical, nutritional, antioxidant and sensory properties of biscuits supplemented   with dried microwave-blanched orange, apple and pomegranate peels at various levels (0-10%, wheat flour substitution). Methodology: Water absorption capacity and pasting properties of wheat flour blended with   fruit   peels   were   assessed   using   farinograph   and   micro   viscoamylograph. Physico-chemical properties as well as antioxidant activities were measured using standard methods. The sensory analysis was performed by trained panelists. Results: Water absorption capacity of the dough increased significantly with increasing levels of orange and apple peels while it decreased with pomegranate peels. However, peak,  hot  paste,  cold  paste  and  breakdown  viscosities  of  the  dough  significantly decreased with increasing proportions of apple and orange peels while they increased with pomegranate peels. The breaking force and weight of the biscuits supplemented with pomegranate peels were the lowest.  Supplementation of biscuits with fruit peelings enhanced the ash and fibre content of the biscuits but had no significant effect on their antioxidant activities except for biscuits containing 10% apple peels which had higher antioxidant activity compared to biscuit controls. Biscuits supplemented with 5% of fruit peels were the most appreciated in terms of surface character, crumb colour and texture. Conclusion:  This study showed that dried microwave-blanched apple peels can be incorporated into biscuits to enhance both their nutritional and antioxidant properties.


Sign in / Sign up

Export Citation Format

Share Document