scholarly journals Physico-Chemical Properties of Biscuits Enriched with Dried Microwave-Blanched Fruit Peelings

Author(s):  
Feumba Dibanda Romelle ◽  
Panyoo Akdowa Emmanuel ◽  
Tiencheu Bernard ◽  
Aswhini Rani ◽  
Mbofung Carl Moses

Aims: To investigate the dough rheological properties as well as physical, nutritional, antioxidant and sensory properties of biscuits supplemented   with dried microwave-blanched orange, apple and pomegranate peels at various levels (0-10%, wheat flour substitution). Methodology: Water absorption capacity and pasting properties of wheat flour blended with   fruit   peels   were   assessed   using   farinograph   and   micro   viscoamylograph. Physico-chemical properties as well as antioxidant activities were measured using standard methods. The sensory analysis was performed by trained panelists. Results: Water absorption capacity of the dough increased significantly with increasing levels of orange and apple peels while it decreased with pomegranate peels. However, peak,  hot  paste,  cold  paste  and  breakdown  viscosities  of  the  dough  significantly decreased with increasing proportions of apple and orange peels while they increased with pomegranate peels. The breaking force and weight of the biscuits supplemented with pomegranate peels were the lowest.  Supplementation of biscuits with fruit peelings enhanced the ash and fibre content of the biscuits but had no significant effect on their antioxidant activities except for biscuits containing 10% apple peels which had higher antioxidant activity compared to biscuit controls. Biscuits supplemented with 5% of fruit peels were the most appreciated in terms of surface character, crumb colour and texture. Conclusion:  This study showed that dried microwave-blanched apple peels can be incorporated into biscuits to enhance both their nutritional and antioxidant properties.

2013 ◽  
Vol 1 (1) ◽  
pp. 77-82 ◽  
Author(s):  
D Gernah ◽  
P Gbakaan

Effect of storage and concentration of potassium carbonate (K2CO3) on the viscosity and related physico – chemical properties of genger (Bombax costatum) powder was determined. Genger powder was stored for a period of four (4) months (May-August) at 30oc ± 5oc under varying concentrations of K2CO3: 0%, 5%, 10% and 15% in two containers (plastic, giving samples A – D and metal tins, giving samples A1 – D1). Thereafter, the moisture and crude fat contents, water absorption capacity, least gelation concentration, effect of K2CO3 concentration on gel strength and viscosity of the stored powders were determined, using standard methods of analysis, with fresh powder (analyzed before storage) as control. Moisture content decreased significantly (p < 0.05) from 8.37% to 3.04% and 2.00% in samples D and D1 respectively, while crude fat content increased significantly (p < 0.05) from 2.50% to 7.50% and 10.05% in the same samples. Water absorption capacity also increased significantly (p < 0.05) from 6.4g/g to 6.40g/g in the fresh sample to 7.30g/g and 8.30g/g in samples D and D1 respectively. Gelation capacity increased considerably, with 15% K2CO3 giving very strong gels at 1.50% concentration. The overall viscosity increased significantly (p < 0.05) with increase in concentration of (K2CO3) from 64.00FN to 110.00FN after storage. Generally, samples stored in metal tin gave better results than those in the plastic container.


2012 ◽  
pp. 385-388 ◽  
Author(s):  
Azadeh Saadatmandi ◽  
Mohammad Elahi ◽  
Reza Farhoosh ◽  
Mahdi Karimi

The incorporation of sugar beet fiber (0–5%) to tortilla chips and the effects on the chemical and sensory properties were studied. Addition of sugar beet fiber (SBF) led to an increasing of water absorption capacity, ash content and darkness while lowering the protein content and oil absorption. Sensory evaluation showed that the overall acceptability of tortilla chips reduces if adding more than 2% SBF.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 228
Author(s):  
Marina Schopf ◽  
Katharina Anne Scherf

Vital gluten is often used in baking to supplement weak wheat flours and improve their baking quality. Even with the same recipe, variable final bread volumes are common, because the functionality differs between vital gluten samples also from the same manufacturer. To understand why, the protein composition of ten vital gluten samples was investigated as well as their performance in a microbaking test depending on the water content in the dough. The gluten content and composition as well the content of free thiols and disulfide bonds of the samples were similar and not related to the specific bread volumes obtained using two dough systems, one based on a baking mixture and one based on a weak wheat flour. Variations of water addition showed that an optimal specific volume of 1.74–2.38 mL/g (baking mixture) and 4.25–5.49 mL/g (weak wheat flour) was reached for each vital gluten sample depending on its specific water absorption capacity.


2016 ◽  
Vol 5 (5) ◽  
pp. 67
Author(s):  
Victoria G. Aguilar-Raymundo ◽  
Jorge F. Vélez-Ruíz

Considering the nutritional and functional characteristics of chickpea, flours of two varieties of chickpea (“Blanco Noroeste” and “Costa 2004”) were prepared to know the effect of cooking. Thus the objective of this study was to compare their physicochemical and functional properties in both, raw and cooked flours. Physical properties of the grain, for the two varieties were similar, whereas the physicochemical and functional properties of the flours exhibited differences as a function of the variety and the processing. The chickpea cooked flours showed lower lightness and higher redness and yellowness with respect to raw flours. The proximal composition of cooked flours presented significant differences in fat (5.98% - 6.09%) and moisture contents (0.48% - 0.54%) with respect to raw flours. The particle size distribution determined for the raw and cooked flours samples, indicated a unimodal behavior with a wide distribution. The water absorption capacity and oil capacity showed significant difference among flour varieties. For pasting properties, a higher viscosity was measured for Costa 2004 (380 cP) and Blanco Noroeste (272 cP) raw flours, raw flour exhibited better pasting properties than cooked flours. 


2021 ◽  
Vol 25 (1) ◽  
pp. 43-52
Author(s):  
Emmanuel Anyachukwu Irondi ◽  
Yunus Temitayo Imam ◽  
Emmanuel Oladipo Ajani

Abstract This study evaluated the effect of addition of Brachystegia eurycoma flour (BEF), a natural source of hydrocolloids, on the physicochemical properties of whole millet flour (WMF) and the sensory attributes of its gluten-free bread. BEF and sodium carboxylmethyl cellulose (a reference hydrocolloid) were added to WMF at 1.5 and 3% proportions, and breads were baked from the blends. Wheat flour (100%CWF) bread served as the control. Amylose level decreased significantly (p < 0.05), while water absorption capacity, peak and final viscosities of the blends increased with increasing proportion of BEF. The 100%CWF bread had better sensory qualities than WMF-BEF breads. Hence, BEF improved the physicochemical properties of WMF-BEF blend, but did not alter the sensory qualities of its gluten-free bread.


Author(s):  
E. O. Afoakwa ◽  
Gilbert O. Sampson ◽  
D. Nyirenda ◽  
C. N. Mwansa ◽  
L. Brimer ◽  
...  

This study investigated effects of processing technique and varietal variations on the physico-functional, starch pasting and viscoelastic properties of cassava (Manihot Esculenta Crantz) flours using a 3x6 factorial experimental approach. Samples were evaluated for their non-volatile acidity, pH, swelling power, solubility water absorption capacity (27oC and 70oC), colour and starch pasting characteristics of the cassava flours using standard methods. Grating and soaking of the cassava tubers significantly (p<0.05) reduced the pH of all the varieties with concomitant increases in non-volatile acidity. Grating and soaking significantly (p<0.05) reduced the swelling power, solubility and water absorption capacity of the flours. Soaked Chila B flour recorded the highest pasting temperature of 66.9°C whiles soaked Mweulu flour recorded the highest peak viscosity (684 BU), viscosity at 95oC (683 BU) and viscosity at 95oC-hold (359 BU), suggesting that the flours from the different cassava varieties could be targeted for different food and industrial products.   Cassava (Manihot esculenta Crantz) is an important root crop in the world and it provides food for about one billion people globally. It contributes significantly to the economy of most tropical countries through processing into various products. Varietal variation in cassava plays a very important role in the production of diversified food products due to its inherent biochemical characteristics such as starch content, sugar content and pasting characteristics. The biochemical composition in the tubers varies according to varieties. Physico-functional and starch pasting properties of cassava are among the most important parameters used to predict the suitability of flours and starches for certain end product uses, and these would aid the selection of appropriate varieties for use in various food and industrial applications.


2021 ◽  
pp. 23-35
Author(s):  
J. N. Okafor ◽  
J. N. Ishiwu ◽  
J. E. Obiegbuna

The aim of this research was to produce acceptable ‘fufu’ from a mixture of sorghum, millet, and African yam bean flours that will have a moderate carbohydrate and protein content with most optimized texture. The functional and sensory properties of flour blends produced from Sorghum, Millet and African yam bean was studied. Sorghum, Millet and African yam bean were processed into flour and mixed at different ratios to obtain composite flours. The flour formulations obtained were analyzed for water absorption capacity, bulk density, least gelation concentration , and viscosity .The  water absorption capacity ranged from 1.00 to 3.00,  the bulk density ranged from 0.56 to 0.82;the least gelation concentration ranged from 5.77 to 6.87,while the viscosity ranged from 0.956 to 9.30.Also proximate composition of the individual flours before formulation  was analyzed, it ranged from 6.13 to 8.46 moisture, 2.00 to 4.67 ash, 0.17 to 8.00 fiber,5.47 to 8.61 fat, 7.57 to 21.84 protein, 58.34 to 69.27 carbohydrate.The sensory values ranged from 5.60 to 6.45 for taste; 4.25 to 6.85  for colour; 5.15 to 6.80 for texture; 3.85 to 5.70 for aroma; 5.45 to 6.45 acceptability. Sample 10 (with the ratio of 40:70:20) had the highest rating for general acceptability. It was observed that sample 1(with the ratio of 60:50:60) had the lowest rating in taste and aroma. The mixture components that could produce optimum texture was determined through optimization plot. This work has demonstrated that acceptable ‘fufu’ with moderate protein and carbohydrate could be successfully produced using composite flours of sorghum, millet and African yam bean.


2020 ◽  
Vol 14 (4) ◽  
Author(s):  
S. Mykolenko ◽  
D. Zhygunov ◽  
T. Rudenko

The technological properties of full-fat amaranth flour depend on the varietal characteristics of the Ukrainian amaranth grain and differ significantly from amaranth flour from flakes and amaranth flour from groats. In comparison with patent wheat flour, amaranth flour has a lower moisture content, higher water absorption capacity and  autolytic  activity. The variety of Amaranthus hypochondriacus significantly effects on the whiteness of full-fat flours, the lightest of which is obtained from the grain cultivar Kharkivsky-1. A higher fat, protein, and fibre content makes amaranth flours more acidic. The water absorption capacity of the flours shows positive correlation with their autolytic activity (+0.885). The acidity negatively correlates with the moisture (-0.939) and whiteness  (-0.814)  of the flours. Using amaranth flour of the different types to replace 5, 15, and 25% of patent wheat flour when making bread increases its specific volume and crumb porosity and decreases its shape stability. The positive correlation of the overall quality of the bread samples under study with their specific volume (+0.540) and the negative correlation with the acidity (- 0.685) are statistically significant. The shape stability negatively correlates with the porosity (-0.598), and the latter positively correlates with the specific volume (+0.533). The use of full-fat amaranth flour increases the specific      volume       and      porosity      of      bread      by      1.1–1.3    and 1.1 times respectively. The use of defatted flour from flakes leads to a 1.3–1.9 -fold increase in the specific volume and to a 1.1–1.2 -old increase  in the porosity. Incorporation of amaranth flour from groats allows increasing the specific volume and porosity of bread by 1.3–1.5 and 1.1–1.2 times respectively. The bread samples with 25% of all amaranth flours considered and with 15% of full-fat flour of the Liera variety  have  the lowest consumer characteristics. It has been proved that using 5–15% of full-fat flour from the amaranth grain of variety Kharkivsky-1 and defatted flour from flakes and groats (by-products of processing amaranth grain into oil) improves the quality and nutritional value of bread.


Sign in / Sign up

Export Citation Format

Share Document