scholarly journals On the three-phase mass transfer with solid particles adhered to the gas-liquid interface

2003 ◽  
Vol 1 (2) ◽  
pp. 160-177
Author(s):  
Endre Nagy

AbstractA heterogeneous, multi-layer mass transfer model is proposed for prediction of the effect of multi-layer packing of catalyst particles adhered to the gas-liquid interface. The behavior of the mass transfer rate with respect to the multi-layer packing, to the particle size and mass transfer coefficient without particles is discussed. It is shown that enhancement can be considerably increased by multi-layer packing compared to that of mono-layer packing, depending on the values of particle size and mass transfer coefficient. The predicted mass transfer rates using the proposed model was verified with experimental data taken from the literature. The model presented should be superior to that of published in the literature.

Author(s):  
Elizabeth León-Becerril ◽  
Rafael Maya-Yescas

Bubble column bioreactors used to perform aerobic fermentations consist of a liquid medium containing microorganisms that uptake oxygen for metabolic reactions and gas bubbles that supply this oxygen. Mass transfer rate from gas to liquid phase is a crucial factor for the performance of bioreactors because microorganisms’ life and metabolic reactions depend directly upon it. The maximum transfer rate of oxygen from gas bubbles to the liquid medium is a function of two important parameters: the specific interfacial area and the mass transfer coefficient. These two parameters are lumped into the volumetric specific transfer coefficient. Since size of gas bubbles is not constant along the bioreactor, gas-liquid mass transfer rate changes continuously. In order to optimize mass transfer rates, it is essential to know the bubble size distribution and the interfacial phenomena in each particular system at different operating conditions. Due to the complexity of hydrodynamics and bubble interphase characteristics, the current state of the problem does not consider a universal model to evaluate mass transfer rates in gas-liquid systems; moreover, information about bubble size and its distribution is often neglected. This work presents a model to evaluate axial distribution of values of volumetric mass transfer coefficients considering changes in bubble size and its influence on bubble area along the reactor in homogeneous regime. Simultaneously, this model evaluates changes of volumetric mass transfer coefficient and its effect on the fermentation kinetics, which influences performance of the bioreactor.


1981 ◽  
Vol 15 (1) ◽  
pp. 59-66 ◽  
Author(s):  
A. Z. Trifonov ◽  
B. M. Nikolova ◽  
M. D. Mikhailov ◽  
B. K. Shishedjiev ◽  
R. B. Kuzmanova

2016 ◽  
Vol 73 (8) ◽  
pp. 1969-1977 ◽  
Author(s):  
Kangning Yao ◽  
Yong Chi ◽  
Fei Wang ◽  
Jianhua Yan ◽  
Mingjiang Ni ◽  
...  

A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s−1 and 0.02191 s−1 at a gas flow rate of 0.67 L min−1 in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L−1, 400 mg L−1, and 600 mg L−1, while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater.


2018 ◽  
Vol 7 (1) ◽  
pp. 710
Author(s):  
Danu Ariono ◽  
Dwiwahju Sasongko ◽  
Priyono Kusumo

To date, evaluation of the performance of liquid-liquid extraction in packed columns has not been able to produce satisfactory results, because the correlations used in this evaluation are empirical in nature, with a very limited range of validity. One of the causes of this limitation is the use of the assumption that the dynamics of liquid dispersed in droplets is constant (in terms of shape, dimensions, and numbers), so that the mass transfer interfacial area and mass transfer coefficient in the column are assumed to be constant. In reality, dynamics of droplets in a column is not constant, due to the imbalance between droplet coalescence and disintegration. For a given droplet diameter, there is an increase in numbers of droplets due to coalescence of smaller droplets, and a  decrease in numbers of droplets due to disintegration into smaller droplets. These coalescence and disintegration phenomena may be caused by various factors, including the existence of packings which impede the flow of droplets. These phenomena impact the mass transfer rate from continuous to dispersed phase, and vice versa, due to a variation in the interfacial contact area and mass transfer coefficient. The observation of droplet dynamics from droplet formation until its motion through void spaces between packings is a critical factor in developing a model that can describe the performance of the packed column. The dynamics of droplets is influenced by various operational and physical variables.  A droplet dynamics experiment has been undertaken, aimed at obtaining the droplet size distribution at specific heights along the column. This distribution is to be used to develop mass transfer coefficient correlations in the continuous and dispersed phases.Keywords: droplet size distribution, packed column Abstrak Evaluasi unjuk kerja ekstraksi cair-cair dalam kolom isian (packed column) hingga saat ini belum dapat memberikan hasil yang memuaskan karena korelasi-korelasi yang  digunakan  masih  bersifat  empiris serta daerah keberlakuannya sangat terbatas. Salah satu penyebab keterbatasan berlakunya korelasi tersebut ialah penggunaan anggapan bahwa dinamika cairan yang terdispersi dalam bentuk tetesan bersifat konstan (bentuk, ukuran serta jumlahnya), sehingga harga luas perpindahan massa dan harga koefisien perpindahan massa dalam kolom dianggap tetap. Kenyataannya dinamika tetesan dalam kolom tidak konstan akibat adanya tetesan yang bergabung dan pecah dalam jumlah yang  tidak sama. Pada suatu harga diameter tetesan tertentu, ada penambahan jumlah tetesan akibat penggabungan tetesan­ tetesan yang ukurannya lebih kecil serta adanya pengurangan jumlah tetesan akibat pecahnya tetesan menjadi tetesan-tetesan yang lebih kecil. Peristiwa penggabungan dan pemecahan tetesan dapat disebabkan berbagai faktor temasuk adanya isian yang menghalangi gerakan tetesan. Kejadian tersebut akan mempengaruhi laju proses perpindahan massa dari fasa kontinyu ke fasa  terdispersi  atau sebaliknya, karena adanya variasi luas permukaan kontak serta koefisien perpindahan massanya. Pengamatan dinamika tetesan mulai saat pembentukan tetes hingga pergerakannya saat melewati sela-sela isian merupakan faktor penting dalam  membangun model  yang  dapat menggambarkan unjuk kerja kolom isian. Dinamika tetesan tersebut dipengaruhi oleh berbagai variabel operasi dan variabel fisik. Eksperimen dinamika fetes yang dilakukan diarahkan untuk memperoleh distribusi ukuran tetes pada posisi ketinggian tertentu dan distribusi tersebut akan digunakan untuk pengembangan  korelasi koefisien perpindahan massa difasa  dispersi danfasa kontinyu.Kata kunci: distribusi ukuran tetes, kolom isian.


2016 ◽  
Vol 22 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Xiaolei Li ◽  
Chunying Zhu

In this study, the mass transfer accompanied by an instantaneous irreversible chemical reaction in a slurry bubble column containing sparingly soluble fine reactant particles has been analyzed theoretically. Based on the penetration theory, combining the cell model, a one-dimensional mass transfer model was developed. In the model, the effects of the particle size and the particle dissolution near the gas-liquid interface on the mass transfer were taken into account. The mass transfer model was solved and an analytical expression of the time-mean mass transfer coefficient was attained. The reactive absorption of SO2from gas mixtures into Mg(OH)2/water slurry was investigated experimentally in a bubble column reactor to validate the mass transfer model. The results indicate that the present model has good predicting performance and could be used to predict mass transfer coefficient for the complicated gas-liquid-solid three-phase system with an instantaneous irreversible chemical reaction.


Author(s):  
A. Haghdoost ◽  
M. Shah-Alami ◽  
H. Mansouri

Mass transfer rates to the drops in liquid-liquid extraction equipment are often likely to be reduced by the presence of surface active contaminants. This reduction in mass transfer is said to be due to a reduction in terminal velocity, and to changes in pattern of internal circulation. A single-drop extraction apparatus was used to investigate the dependency of mass transfer coefficient on the amount of surfactant added in a system of n-butanol/succinic acid/water. Three types of surfactants, SDS, DTMAC and Triton X-100, were used to study their effects on the inhibition of mass transfer in liquid-liquid extraction. The effect of surfactants concentration on extraction percentage, overall mass transfer coefficient, and extra mass transfer resistance was investigated for these surfactants. Also variation of terminal velocity as a function of surfactant concentration and drop diameter were illustrated for both surfactants. Finally these surfactants were compared to each other.


2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Anna Kiełbus-Rąpała ◽  
Joanna Karcz

AbstractThe aim of the research work was to investigate the effect of the presence and concentration of solid particles on the gas-liquid volumetric mass transfer coefficient in a mechanically stirred gas-solid-liquid system. Experimental studies were conducted in a tall vessel of the diameter of 0.288 m, equipped with two designs of double stirrers. Three high-speed stirrers were used: A 315, Smith turbine, and Rushton turbine. The following operating parameters were changed: gas flow rate, stirrer speed, and solid concentration. The volumetric mass transfer coefficient was determined using the dynamic gassing-out method. In the range of the measurements conducted, this coefficient was strongly affected by both the presence and the concentration of particles in the system. Generally, a low concentration of particles in the system, equal to 0.5 mass %, caused an increase of the volumetric mass transfer coefficient values for both stirrer configurations compared to a system without solids whilst more particles (2.5 mass %) caused a decrease of this coefficient. It could be supposed that an increase of slurry viscosity affected the decrease of the volumetric mass transfer coefficient at higher solid concentration. An empirical correlation was proposed for volumetric mass transfer coefficient prediction. Its parameters were fitted using experimental data.


2014 ◽  
Vol 68 (4) ◽  
pp. 483-490
Author(s):  
Milena Knezevic ◽  
Dragan Povrenovic

Distribution of gas bubbles and volumetric mass transfer coefficient, Kla, in a three phase system, with different types of solid particles at different operation conditions were studied in this paper. The ranges of superficial gas and liquid velocities used in this study were 0,03-0,09 m/s and 0-0,1 m/s, respectively. The three different types of solid particles were used as a bed in the column (glass dp=3 mm, dp=6 mm; ceramic dp=6 mm). The experiments were carried out in a 2D plexiglas column, 278 x 20,4 x 500 mm and in a cylindrical plexiglas column, with a diameter of 64 mm and a hight of 2000 mm. The Kla coefficient increased with gas and liquid velocities. Results showed that the volumetric mass transfer coefficient has a higher values in three phase system, with solid particles, compared with two phase system. The particles properties (diameter and density) have a major impact on oxygen mass transfer in three phase systems.


Sign in / Sign up

Export Citation Format

Share Document