scholarly journals Spatial Differentiation Of Global Solar Radiation in Toruń And its Suburban Area (Central Poland) in 2012

2014 ◽  
Vol 7 (1) ◽  
pp. 27-56 ◽  
Author(s):  
Marek Kejna ◽  
Joanna Uscka-Kowalkowska ◽  
Andrzej Araźny ◽  
Mieczysław Kunz ◽  
Rafał Maszewski ◽  
...  

Abstract : This article investigates the spatial distribution of global solar radiation (K↓) in Toruń and its suburbs, observed in 2012. Measurements were taken at 12 points (7 within the city and 5 in the suburban area) using CNR4 net radiometers and automatic weather stations (Vantage Pro+). At all locations, the diurnal and annual courses of K↓ were typically related to the Earth’s rotational movement and changes in the sun’s declination over the year, and disturbed by clouds and atmospheric phenomena that enhance the extinction of solar radiation. A substantial spatial diversity of K↓ was observed in Toruń and its suburbs. The annual sum of K↓ at several urban locations accounted for over 70% of the solar radiation in the open space outside the city. The amount of incoming solar radiation in the urban area was more restricted in winter (<50%) than in summer (approx. 70%). The diurnal courses of K↓ were heavily disturbed by local obstacles which cast shadows (causing a considerable decrease of K↓), but there were instances of increases in K↓ (122%) augmented by radiation reflected from roofs, walls and windows surrounding the measurement point. The spatial diversity of K↓ in the urban area is heterogeneous, due to local meteorological conditions (cloudiness, fog, smog and airborne dust) and the obscuring of the horizon.

2016 ◽  
Vol 20 (4) ◽  
pp. 29-37
Author(s):  
Kinga Nelken ◽  
Kamil Leziak

AbstractThe aim of this paper is to determine the contemporary differences in the inflow of global solar radiation in Warsaw (urban station) and Belsk (rural station). The meteorological data used comprised daily sums of global solar radiation (in MJ•m−2) and the duration of sunshine (in hours) for the period 2008 2014. On clear days in spring and summer, the rural area receives more solar radiation in comparison to the urban area, whereas in autumn a reverse relationship occurs. On cloudy days in all seasons, the rural area receives more solar radiation than the urban area, and the relationship is the strongest in winter. Differences between urban and rural areas on cloudy days are smaller than those observed on clear days.


2011 ◽  
Vol 11 (8) ◽  
pp. 3789-3809 ◽  
Author(s):  
G. Li ◽  
M. Zavala ◽  
W. Lei ◽  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
...  

Abstract. Organic aerosol concentrations are simulated using the WRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches are employed to predict the variation and spatial distribution of the organic aerosol concentrations: (1) a traditional 2-product secondary organic aerosol (SOA) model with non-volatile primary organic aerosols (POA); (2) a non-traditional SOA model including the volatility basis-set modeling method in which primary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA (Mexico City Metropolitan Area) 2006 official emission inventory is used in simulations and the POA emissions are modified and distributed by volatility based on dilution experiments for the non-traditional SOA model. The model results are compared to the Aerosol Mass Spectrometry (AMS) observations analyzed using the Positive Matrix Factorization (PMF) technique at an urban background site (T0) and a suburban background site (T1) in Mexico City. The traditional SOA model frequently underestimates the observed POA concentrations during rush hours and overestimates the observations in the rest of the time in the city. The model also substantially underestimates the observed SOA concentrations, particularly during daytime, and only produces 21% and 25% of the observed SOA mass in the suburban and urban area, respectively. The non-traditional SOA model performs well in simulating the POA variation, but still overestimates during daytime in the urban area. The SOA simulations are significantly improved in the non-traditional SOA model compared to the traditional SOA model and the SOA production is increased by more than 100% in the city. However, the underestimation during daytime is still salient in the urban area and the non-traditional model also fails to reproduce the high level of SOA concentrations in the suburban area. In the non-traditional SOA model, the aging process of primary organic components considerably decreases the OH levels in simulations and further impacts the SOA formation. If the aging process in the non-traditional model does not have feedback on the OH in the gas-phase chemistry, the SOA production is enhanced by more than 10% compared to the simulations with the OH feedback during daytime, and the gap between the simulations and observations in the urban area is around 3 μg m−3 or 20% on average during late morning and early afternoon, within the uncertainty from the AMS measurements and PMF analysis. In addition, glyoxal and methylglyoxal can contribute up to approximately 10% of the observed SOA mass in the urban area and 4% in the suburban area. Including the non-OH feedback and the contribution of glyoxal and methylglyoxal, the non-traditional SOA model can explain up to 83% of the observed SOA in the urban area, and the underestimation during late morning and early afternoon is reduced to 0.9 μg m−3 or 6% on average. Considering the uncertainties from measurements, emissions, meteorological conditions, aging of semi-volatile and intermediate volatile organic compounds, and contributions from background transport, the non-traditional SOA model is capable of closing the gap in SOA mass between measurements and models.


2019 ◽  
Vol 136 ◽  
pp. 05010
Author(s):  
Moyan Zhang ◽  
Yan Liu ◽  
Ruixin Chen ◽  
Xiangfei Guo ◽  
Weiqing Yuan ◽  
...  

In this paper, the total daily global solar radiation is tested at 18 locations with different morphological characteristics in Xi’an University of Architecture and Technology. PTgui is used to convert the panoramic pictures from Baidu Street Map to fisheye images. Sky view factor (SVF) and tree view factor (TVF) are calculated by Rayman model with fisheye images. SVF is used to calculate the total daily global solar radiation at the 18 locations with two different methods and TVF is used to classify the locations. The calculations and testing results are compared and combined the morphological characteristics. Then it is found that using suitable methods on different locations is necessary to obtain more accurate results whether the TVF (tree view factor) is more than 0.3 or less. To obtain solar radiation at different locations in the urban area, the calculating methods should be carefully chosen based on the morphology characteristics of the location.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Mohammed Ali Jallal ◽  
◽  
Samira Chabaa ◽  
Abdelouhab Zeroual ◽  
◽  
...  

Precise global solar radiation (GSR) measurements in a given location are very essential for designing and supervising solar energy systems. In the case of rarity or absence of these measurements, it is important to have a theoretical or empirical model to compute the GSR values. Therefore, the main goal of this work is to offer, to designers and engineers of solar energy systems, an appropriate and accurate way to predict the half-hour global solar radiation (HHGSR) time series from some available meteorological parameters (relative humidity, air temperature, wind speed, precipitation, and acquisition time vector in half-hour scale). For that purpose, two intelligent models are developed: the first one is a multivariate dynamic neural network with feedback connection, and the second is a multivariate static neural network. The database used to build these models was recorded in Agdal’s meteorological station in Marrakesh, Morocco, during the years of 2013 and 2014, and it was divided into two subsets. The first subset is used for training and validating the models, and the second subset is used for testing the efficiency and the robustness of the developed models. The obtained results, in terms of the statistical performance indicators, demonstrate the efficiency of the developed forecasting models to accurately predict the HHGSR parameter in the city of Marrakesh, Morocco.


Author(s):  
Adi Kurniawan ◽  
Anisa Harumwidiah

The estimation of the daily average global solar radiation is important since it increases the cost efficiency of solar power plant, especially in developing countries. Therefore, this study aims at developing a multi layer perceptron artificial neural network (ANN) to estimate the solar radiation in the city of Surabaya. To guide the study, seven (7) available meteorological parameters and the number of the month was applied as the input of network. The ANN was trained using five-years data of 2011-2015. Furthermore, the model was validated by calculating the mean average percentage error (MAPE) of the estimation for the years of 2016-2019. The results confirm that the aforementioned model is feasible to generate the estimation of daily average global solar radiation in Surabaya, indicated by MAPE of less than 15% for all testing years.


2017 ◽  
Vol 10 (6) ◽  
pp. 1802
Author(s):  
Alice Dos Santos Macedo ◽  
Gilberto Fisch

Este trabalho realizou um estudo da variabilidade espacial em 2014 da irradiância solar na região de Manaus-AM, através de dados observacionais, inserido no Projeto GOAmazon 2014/15. Também, como forma complementar, foi realizada a análise da cobertura de nuvens, chuva e aerossóis e suas interrelações com a irradiância solar. Como resultado, observa-se que os menores valores médios da irradiância solar ocorreram na área urbana,o que é justificado, em parte pela urbanização que altera os fluxos envolvidos, diminuindo a irradiância solar à superfície. Os valores típicos são entre 400 e 600 Wm-2na estação chuvosa (fevereiro/março) com um desvio padrão de 200 e 380 Wm-2e entre 650 e 800 Wm-2na estação seca (agosto-setembro) com desvio padrão de 190 e 300 Wm-2. A B S T R A C T   The solar radiation is an important climatic element in the Amazon region, as it has a strong  impact for ecological (by the preservation of the biodiversity) and technological (as a renewable energy) areas. Consequently, this study contributes for these themes, conducting an observational study of the spatial variability of the solar irradiance for Manaus-AM area, with data collected during the project GOAmazon 2014/15. The cloud cover and rainfall and their relationships with solar radiation were also analysed. The maximum values observed for the wet season (february and march) are in the range 450 and 600 Wm-2 with high standart deviation (300 - 350 Wm-2 ), while they are in the range from 650 and 800 Wm-2  during the dry period (august - september) with lower standart deviation (200 - 300 Wm-2).  These values are directly associated with cloud cover and rainfall. In general, the urban area (Manaus city) showed the low values of solar radiation at the surface compared with its neighborhood, inducing a horizontal gradient of clouds/rainfall and solar energy between the city and the semi rural areas.  Keywords: piranometer, global solar radiation, cloud cover, total sky imager


2010 ◽  
Vol 10 (12) ◽  
pp. 29349-29404 ◽  
Author(s):  
G. Li ◽  
M. Zavala ◽  
W. Lei ◽  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
...  

Abstract. Organic aerosol concentrations are simulated using the WRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches are employed to predict the variation and spatial distribution of the organic aerosol concentrations: (1) a traditional 2-product secondary organic aerosol (SOA) model with non-volatile primary organic aerosols (POA); (2) a non-traditional SOA model including the volatility basis-set modeling method in which primary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA 2006 official emission inventory is used in simulations and the POA emissions are modified and distributed by volatility based on dilution experiments for the non-traditional SOA model. The model results are compared to the Aerosol Mass Spectrometry (AMS) observations analyzed using the Positive Matrix Factorization (PMF) technique at an urban background site (T0) and a suburban background site (T1) in Mexico City. The traditional SOA model frequently underestimates the observed POA concentrations during rush hours and overestimates the observations in the rest of the time in the city. The model also substantially underestimates the observed SOA concentrations, particularly during daytime, and only produces 21% and 25% of the observed SOA mass in the suburban and urban area, respectively. The non-traditional SOA model performs well in simulating the POA variation, but still overestimates during daytime in the urban area. The SOA simulations are significantly improved in the non-traditional SOA model compared to the traditional SOA model and the SOA production is increased by more than 100% in the city. However, the underestimation during daytime is still salient in the urban area and the non-traditional model also fails to reproduce the high level of SOA concentrations in the suburban area. In the non-traditional SOA model, the aging process of primary organic components considerably decreases the OH levels in simulations and further impacts the SOA formation. If the aging process in the non-traditional model does not have feedback on the OH in the gas-phase chemistry, the SOA production is enhanced by more than 10% compared to the simulations with the OH feedback during daytime, and the gap between the simulations and observations in the urban area is around 3 μg m−3 or 20% on average during late morning and early afternoon, within the uncertainty from the AMS measurements and PMF analysis. In addition, glyoxal and methylglyoxal can contribute up to approximately 10% of the observed SOA mass in the urban area and 4% in the suburban area. Including the non-OH feedback and the contribution of glyoxal and methylglyoxal, the non-traditional SOA model can explain up to 83% of the observed SOA in the urban area, and the underestimation during late morning and early afternoon is reduced to 0.9 μg m−3 or 6% on average. Considering the uncertainties from measurements, emissions, meteorological conditions, aging of SOA from anthropogenic VOCs, and contributions from background transport, the non-traditional SOA model is capable of closing the gap in SOA mass between measurements and models.


2017 ◽  
Vol 13 (1) ◽  
pp. 71-81
Author(s):  
Joanna Uscka-Kowalkowska ◽  
Michał Posyniak ◽  
Krzysztof M. Markowicz ◽  
Jerzy Podgórski

AbstractThe paper describes the relationship between direct solar radiation in a city (Warsaw) and in its broadly-defined suburban area (Belsk). The analysis covers the days of 1969-2003 when observations were carried out at both sites. The degree of extinction of solar radiation was expressed by means of Linke’s turbidity factor. Its mean annual value on the selected days of the period under consideration was 3.00± 0.10 in Warsaw and 2.87±0.11 in Belsk. Average atmospheric turbidity for individual seasons of the year as well as for the whole year was higher in Warsaw than in Belsk. In all cases, except for the summer, these differences were statistically significant. The period considered was divided into two sub-periods (1969-1993 and 1994-2003), in which atmospheric turbidity in Warsaw and in Belsk was compared by individual seasons and whole years. At both analysed sites Linke’s atmospheric turbidity factor decreased in 1994-2003, compared to the values for the earlier sub-period (1969-1993). However, the average annual atmospheric turbidity in Warsaw in comparison to Belsk remained the same, i.e. greater turbidity occurred in the city in both sub-periods.


Sign in / Sign up

Export Citation Format

Share Document