scholarly journals Macroeconomic forecasting in Poland: The role of forecasting competitions

2020 ◽  
Vol 7 (54) ◽  
pp. 1-11
Author(s):  
Jakub Rybacki

AbstractMacroeconomic forecasters are often believed to idealistically work on improving the accuracy of their estimates based on for example the Root Mean Squared Error (RMSE). Unfortunately, reality is far more complex. Forecasters are not awarded equally for each of their estimates. They have their targets of acquiring publicity or to earn prestige. This article aims to study the results of Parkiet's competitions of macroeconomic forecasting during 2015–2019. Based on a logit model, we analyse whether more accurate forecasting of some selected macroeconomic variables (e.g. inflation) increases the chances of winning the competition by a greater degree comparing to the others. Our research shows that among macroeconomic variables three groups have a significant impact on the final score: inflation (CPI and core inflation), the labour market (employment in the enterprise sector and unemployment rate) and financial market indicators (EUR/PLN and 10-year government bond yields). Each group is characterised by a low disagreement between forecasters. In the case of inflation, we found evidence that some forecasters put a greater effort to score the top place. There is no evidence that forecasters are trying to somehow exploit the contest.

2019 ◽  
Author(s):  
Mohammadreza Bahadorian ◽  
Christoph Zechner ◽  
Carl Modes

Many systems in biology and beyond employ collaborative, collective communication strategies for improved efficiency and adaptive benefit. One such paradigm of particular interest is the community estimation of a dynamic signal, when, for example, an epithelial tissue of cells must decide whether to react to a given dynamic external concentration of stress signaling molecules. At the level of dynamic cellular communication, however, it remains unknown what effect, if any, arises from communication beyond the mean field level. What are the limits and benefits to communication across a network of neighbor interactions? What is the role of Poissonian vs. super Poissonian dynamics in such a setting? How does the particular topology of connections impact the collective estimation and that of the individual participating cells? In this letter we construct a robust and general framework of signal estimation over continuous time Markov chains in order to address and answer these questions. Our results show that in the case of Possonian estimators, the communication solely enhances convergence speed of the Mean Squared Error (MSE) of the estimators to their steady-state values while leaving these values unchanged. However, in the super-Poissonian regime, MSE of estimators significantly decreases by increasing the number of neighbors. Surprisingly, in this case, the clustering coefficient of an estimator does not enhance its MSE while reducing total MSE of the population.


2018 ◽  
Vol 6 (1) ◽  
pp. 109
Author(s):  
Nicolas Afflatet

 Governments with high public debt risk that investors raise doubts about their ability to repay their debt since interest payments constitute an increasing share of public budgets. High interest payments may then fuel bond yields on secondary markets and subsequently lead to rising refinancing costs. This could precipitate a self-fulfilling prophecy according to which investors’ doubts about a default make the default more probable. Although there already are extensive research results on determinants of bond yields, the role of governments’ interest payments has not been duly taken into account. This paper tests whether the size of public interest payments had an influence on government bond yields during the European debt crisis. There seems to be indeed evidence that higher interest quotas and increasing interest-growth differentials entail higher bond yields. 


2012 ◽  
Vol 61 (2) ◽  
pp. 277-290 ◽  
Author(s):  
Ádám Csorba ◽  
Vince Láng ◽  
László Fenyvesi ◽  
Erika Michéli

Napjainkban egyre nagyobb igény mutatkozik olyan technológiák és módszerek kidolgozására és alkalmazására, melyek lehetővé teszik a gyors, költséghatékony és környezetbarát talajadat-felvételezést és kiértékelést. Ezeknek az igényeknek felel meg a reflektancia spektroszkópia, mely az elektromágneses spektrum látható (VIS) és közeli infravörös (NIR) tartományában (350–2500 nm) végzett reflektancia-mérésekre épül. Figyelembe véve, hogy a talajokról felvett reflektancia spektrum információban nagyon gazdag, és a vizsgált tartományban számos talajalkotó rendelkezik karakterisztikus spektrális „ujjlenyomattal”, egyetlen görbéből lehetővé válik nagyszámú, kulcsfontosságú talajparaméter egyidejű meghatározása. Dolgozatunkban, a reflektancia spektroszkópia alapjaira helyezett, a talajok ösz-szetételének meghatározását célzó módszertani fejlesztés első lépéseit mutatjuk be. Munkánk során talajok szervesszén- és CaCO3-tartalmának megbecslését lehetővé tévő többváltozós matematikai-statisztikai módszerekre (részleges legkisebb négyzetek módszere, partial least squares regression – PLSR) épülő prediktív modellek létrehozását és tesztelését végeztük el. A létrehozott modellek tesztelése során megállapítottuk, hogy az eljárás mindkét talajparaméter esetében magas R2értéket [R2(szerves szén) = 0,815; R2(CaCO3) = 0,907] adott. A becslés pontosságát jelző közepes négyzetes eltérés (root mean squared error – RMSE) érték mindkét paraméter esetében közepesnek mondható [RMSE (szerves szén) = 0,467; RMSE (CaCO3) = 3,508], mely a reflektancia mérési előírások standardizálásával jelentősen javítható. Vizsgálataink alapján arra a következtetésre jutottunk, hogy a reflektancia spektroszkópia és a többváltozós kemometriai eljárások együttes alkalmazásával, gyors és költséghatékony adatfelvételezési és -értékelési módszerhez juthatunk.


Author(s):  
Nadia Hashim Al-Noor ◽  
Shurooq A.K. Al-Sultany

        In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson” and the “Expectation-Maximization” techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function in terms of their mean squared error values and integrated mean squared error values respectively.


2014 ◽  
Vol 2 (2) ◽  
pp. 47-58
Author(s):  
Ismail Sh. Baqer

A two Level Image Quality enhancement is proposed in this paper. In the first level, Dualistic Sub-Image Histogram Equalization DSIHE method decomposes the original image into two sub-images based on median of original images. The second level deals with spikes shaped noise that may appear in the image after processing. We presents three methods of image enhancement GHE, LHE and proposed DSIHE that improve the visual quality of images. A comparative calculations is being carried out on above mentioned techniques to examine objective and subjective image quality parameters e.g. Peak Signal-to-Noise Ratio PSNR values, entropy H and mean squared error MSE to measure the quality of gray scale enhanced images. For handling gray-level images, convenient Histogram Equalization methods e.g. GHE and LHE tend to change the mean brightness of an image to middle level of the gray-level range limiting their appropriateness for contrast enhancement in consumer electronics such as TV monitors. The DSIHE methods seem to overcome this disadvantage as they tend to preserve both, the brightness and contrast enhancement. Experimental results show that the proposed technique gives better results in terms of Discrete Entropy, Signal to Noise ratio and Mean Squared Error values than the Global and Local histogram-based equalization methods


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 329
Author(s):  
Mahdi O. Karkush ◽  
Mahmood D. Ahmed ◽  
Ammar Abdul-Hassan Sheikha ◽  
Ayad Al-Rumaithi

The current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production of thematic maps showing the variation of the bearing capacity of the soil over the whole area of Al-Basrah city correlated with several depths. The bearing capacity of soil obtained from the suggested first-order polynomial matches well with those calculated from the results of SPTs with a deviation of ±30% at a 95% confidence interval.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1237
Author(s):  
Ivan Pisa ◽  
Antoni Morell ◽  
Ramón Vilanova ◽  
Jose Lopez Vicario

Industrial environments are characterised by the non-lineal and highly complex processes they perform. Different control strategies are considered to assure that these processes are correctly performed. Nevertheless, these strategies are sensible to noise-corrupted and delayed measurements. For that reason, denoising techniques and delay correction methodologies should be considered but, most of these techniques require a complex design and optimisation process as a function of the scenario where they are applied. To alleviate this, a complete data-based approach devoted to denoising and correcting the delay of measurements is proposed here with a two-fold objective: simplify the solution design process and achieve its decoupling from the considered control strategy as well as from the scenario. Here it corresponds to a Wastewater Treatment Plant (WWTP). However, the proposed solution can be adopted at any industrial environment since neither an optimization nor a design focused on the scenario is required, only pairs of input and output data. Results show that a minimum Root Mean Squared Error (RMSE) improvement of a 63.87% is achieved when the new proposed data-based denoising approach is considered. In addition, the whole system performance show that similar and even better results are obtained when compared to scenario-optimised methodologies.


Sign in / Sign up

Export Citation Format

Share Document