scholarly journals Hypoglycemic activity of Phaseolus vulgaris (L.) aqueous extract in type 1 diabetic rats

2019 ◽  
Vol 32 (4) ◽  
pp. 210-218
Author(s):  
Tetiana Halenova ◽  
Natalia Raksha ◽  
Olha Kravchenko ◽  
Tetiana Vovk ◽  
Alona Yurchenko ◽  
...  

Abstract The aim of the present study was to evaluate the hypoglycemic activity of the aqueous extract from the fruit walls of Phaseolus vulgaris pods and to examine the potential mechanism underlying the improvement of the glycemic level. In the course of the study, diabetes mellitus was induced in rats with a single intraperitoneal injection of streptozotocin (45 mg·kg−1 b.w.). Diabetic and control rats were then orally administered with a single-dose or repeated-dose (28 day) of P. vulgaris extract (200 mg·kg−1). Results show that the extract was found to possess significant hypoglycemic activity, and the study of glucose utilization by isolated rat hemidiaphragm suggests that the aqueous extract may enhance the peripheral utilization of glucose. The subsequent experiments have revealed that the P. vulgaris extract could increase glucose transporter 4 (GLUT-4) content in skeletal muscle cells of control and diabetic rats. Our data also indicate that the P. vulgaris extract did not affect the content of the insulin receptor, but significantly reduced the total tyrosine kinase activity in skeletal muscle cells of both experimental groups of rats. The present results clearly indicated that P. vulgaris extract may be beneficial for reducing hyperglycemia through its potency in regulation of glucose utilization via GLUT-4, but the current mechanism remains to be unidentified.

Pharmacology ◽  
2021 ◽  
pp. 1-15
Author(s):  
Jyoti Gupta ◽  
Dharmendra P. Singh ◽  
Prem C. Verma ◽  
Neha Rahuja ◽  
Rohit Srivastava ◽  
...  

<b><i>Introduction:</i></b> The present study deals with the synthesis of pregnane-oximino-amino-alkyl-ethers and their evaluation for antidiabetic and anti-dyslipidemic activities in validated animal and cell culture models. <b><i>Methods:</i></b> The effect on glucose tolerance was measured in sucrose-loaded rats; antidiabetic activity was evaluated in streptozotocin (STZ)-induced diabetic rats and genetically diabetic <i>db</i>/<i>db</i> mice; the anti-dyslipidemic effect was characterized in high-fructose, high-fat diet (HFD)-fed dyslipidemic hamsters. The effect on glucose production and glucose utilization was analyzed in HepG2 liver and L6 skeletal muscle cells, respectively. <b><i>Results:</i></b> From the synthesized molecules, pregnane-oximino-amino-alkyl-ether (compound <b>14b)</b> improved glucose clearance in sucrose-loaded rats and exerted antihyperglycemic activity on STZ-induced diabetic rats. Further evaluation in genetically diabetic <i>db</i>/<i>db</i> mice showed temporal decrease in blood glucose, and improvement in glucose tolerance and lipid parameters, associated with mild improvement in the serum insulin level. Moreover, compound <b>14b</b> treatment displayed an anti-dyslipidemic effect characterized by significant improvement in altered lipid parameters of the high-fructose, HFD-fed dyslipidemic hamster model. In vitro analysis in the cellular system suggested that compound <b>14b</b> decreased glucose production in liver cells and stimulated glucose utilization in skeletal muscle cells. These beneficial effects of compound <b>14b</b> were associated with the activation of the G-protein-coupled bile acid receptor TGR5. <b><i>Conclusion:</i></b> Compound <b>14b</b> exhibits antidiabetic and anti-dyslipidemic activities through activating the TGR5 receptor system and can be developed as a lead for the management of type II diabetes and related metabolic complications.


Endocrinology ◽  
2007 ◽  
Vol 148 (11) ◽  
pp. 5248-5257 ◽  
Author(s):  
Mònica Díaz ◽  
Costin N. Antonescu ◽  
Encarnación Capilla ◽  
Amira Klip ◽  
Josep V. Planas

In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.


2008 ◽  
Vol 294 (5) ◽  
pp. E961-E968 ◽  
Author(s):  
Koji Sato ◽  
Motoyuki Iemitsu ◽  
Katsuji Aizawa ◽  
Ryuichi Ajisaka

Circulating dehydroepiandrosterone (DHEA) is converted to testosterone or estrogen in the target tissues. Recently, we demonstrated that skeletal muscles are capable of locally synthesizing circulating DHEA to testosterone and estrogen. Furthermore, testosterone is converted to 5α-dihydrotestosterone (DHT) by 5α-reductase and exerts biophysiological actions through binding to androgen receptors. However, it remains unclear whether skeletal muscle can synthesize DHT from testosterone and/or DHEA and whether these hormones affect glucose metabolism-related signaling pathway in skeletal muscles. We hypothesized that locally synthesized DHT from testosterone and/or DHEA activates glucose transporter-4 (GLUT-4)-regulating pathway in skeletal muscles. The aim of the present study was to clarify whether DHT is synthesized from testosterone and/or DHEA in cultured skeletal muscle cells and whether these hormones affect the GLUT-4-related signaling pathway in skeletal muscles. In the present study, the expression of 5α-reductase mRNA was detected in rat cultured skeletal muscle cells, and the addition of testosterone or DHEA increased intramuscular DHT concentrations. Addition of testosterone or DHEA increased GLUT-4 protein expression and its translocation. Furthermore, Akt and protein kinase C-ζ/λ (PKC-ζ/λ) phosphorylations, which are critical in GLUT-4-regulated signaling pathways, were enhanced by testosterone or DHEA addition. Testosterone- and DHEA-induced increases in both GLUT-4 expression and Akt and PKC-ζ/λ phosphorylations were blocked by a DHT inhibitor. Finally, the activities of phosphofructokinase and hexokinase, main glycolytic enzymes, were enhanced by testosterone or DHEA addition. These findings suggest that skeletal muscle is capable of synthesizing DHT from testosterone, and that DHT activates the glucose metabolism-related signaling pathway in skeletal muscle cells.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3129
Author(s):  
Jyotsana Pandey ◽  
Kapil Dev ◽  
Sourav Chattopadhyay ◽  
Sleman Kadan ◽  
Tanuj Sharma ◽  
...  

Estrogenic molecules have been reported to regulate glucose homeostasis and may be beneficial for diabetes management. Here, we investigated the estrogenic effect of β-sitosterol-3-O-D-glucopyranoside (BSD), isolated from the fruits of Cupressus sempervirens and monitored its ability to regulate glucose utilization in skeletal muscle cells. BSD stimulated ERE-mediated luciferase activity in both ERα and ERβ-ERE luc expression system with greater response through ERβ in HEK-293T cells, and induced the expression of estrogen-regulated genes in estrogen responsive MCF-7 cells. In silico docking and molecular interaction studies revealed the affinity and interaction of BSD with ERβ through hydrophobic interaction and hydrogen bond pairing. Furthermore, prolonged exposure of L6-GLUT4myc myotubes to BSD raised the glucose uptake under basal conditions without affecting the insulin-stimulated glucose uptake, the effect associated with enhanced translocation of GLUT4 to the cell periphery. The BSD-mediated biological response to increase GLUT4 translocation was obliterated by PI-3-K inhibitor wortmannin, and BSD significantly increased the phosphorylation of AKT (Ser-473). Moreover, BSD-induced GLUT4 translocation was prevented in the presence of fulvestrant. Our findings reveal the estrogenic activity of BSD to stimulate glucose utilization in skeletal muscle cells via PI-3K/AKT-dependent mechanism.


Author(s):  
Hye Kyoung Sung ◽  
Patricia L. Mitchell ◽  
Sean Gross ◽  
Andre Marette ◽  
Gary Sweeney

Adiponectin is well established to mediate many beneficial metabolic effects, and this has stimulated great interest in development and validation of adiponectin receptor agonists as pharmaceutical tools. This study investigated the effects of ALY688, a peptide-based adiponectin receptor agonist, in rat L6 skeletal muscle cells. ALY688 significantly increased phosphorylation of several adiponectin downstream effectors, including AMPK, ACC and p38MAPK, assessed by immunoblotting and immunofluorescence microscopy. Temporal analysis using cells expressing an Akt biosensor demonstrated that ALY688 enhanced insulin sensitivity. This effect was associated with increased insulin-stimulated Akt and IRS-1 phosphorylation. The functional metabolic significance of these signaling effects was examined by measuring glucose uptake in myoblasts stably overexpressing the glucose transporter GLUT4. ALY688 treatment both increased glucose uptake itself and enhanced insulin-stimulated glucose uptake. In the model of high glucose/high insulin (HGHI)-induced insulin resistant cells, both temporal studies using the Akt biosensor as well as immunoblotting assessing Akt and IRS-1 phosphorylation indicated that ALY688 significantly reduced insulin resistance. Importantly, we observed that ALY688 administration to high-fat high sucrose fed mice also improve glucose handling, validating its efficacy in vivo. In summary, these data indicate that ALY688 activates adiponectin signaling pathways in skeletal muscle, leading to improved insulin sensitivity and beneficial metabolic effects.


Author(s):  
Abraham Giacoman-Martínez ◽  
Francisco Javier Alarcón-Aguilar ◽  
Alejandro Zamilpa-Alvarez ◽  
Fengyang Huang ◽  
Rodrigo Romero ◽  
...  

α-amyrin, a natural pentacyclic triterpene, have anti-hyperglycemic effect in mice and dual PPARδ/γ action in 3T3-L1 adipocytes, and potential in the control of type 2 diabetes (T2D). About 80% of glucose uptake occurs in skeletal muscle cells, playing a significant role in IR and T2D. Peroxisome-proliferator activated receptors (PPARs), in particular PPARδ and PPARγ, are involved in the regulation of lipids and carbohydrates and, along adenosine-monophosphate (AMP)-activated protein kinase (AMPK) and protein kinase B (Akt/PKB), are implicated in translocation of glucose transporter 4 (GLUT4). However, it is still unknown whether α-amyrin can affect these pathways in skeletal muscle cells. The work's objective was to determine the action of α-amyrin in PPARδ, PPARγ, AMPK, and Akt/PKB in C2C12 myoblasts. The expression of PPARδ, PPARγ, FATP, and GLUT4 was quantified using RT-qPCR and Western blot. α-amyrin increased these markers along with p-AMPK but not p-Akt/PKB. Molecular docking showed that α-amyrin acts as an AMPK-allosteric activator, and may be related to GLUT4 translocation, evidenced by confocal microscopy. These data support that α-amyrin could have an insulin-mimetic action in C2C12 myoblasts and should be considered as a bioactive molecule for new multitarget drugs with utility in T2D and other metabolic diseases.


2010 ◽  
Vol 298 (3) ◽  
pp. E565-E576 ◽  
Author(s):  
Jiarong Liu ◽  
Xuxia Wu ◽  
John L. Franklin ◽  
Joseph L. Messina ◽  
Helliner S. Hill ◽  
...  

Tribbles homolog 3 (TRIB3) was found to inhibit insulin-stimulated Akt phosphorylation and modulate gluconeogenesis in rodent liver. Currently, we examined a role for TRIB3 in skeletal muscle insulin resistance. Ten insulin-sensitive, ten insulin-resistant, and ten untreated type 2 diabetic (T2DM) patients were metabolically characterized by hyperinsulinemic euglycemic glucose clamps, and biopsies of vastus lateralis were obtained. Skeletal muscle samples were also collected from rodent models including streptozotocin (STZ)-induced diabetic rats, db/db mice, and Zucker fatty rats. Finally, L6 muscle cells were used to examine regulation of TRIB3 by glucose, and stable cell lines hyperexpressing TRIB3 were generated to identify mechanisms underlying TRIB3-induced insulin resistance. We found that 1) skeletal muscle TRIB3 protein levels are significantly elevated in T2DM patients; 2) muscle TRIB3 protein content is inversely correlated with glucose disposal rates and positively correlated with fasting glucose; 3) skeletal muscle TRIB3 protein levels are increased in STZ-diabetic rats, db/db mice, and Zucker fatty rats; 4) stable TRIB3 hyperexpression in muscle cells blocks insulin-stimulated glucose transport and glucose transporter 4 (GLUT4) translocation and impairs phosphorylation of Akt, ERK, and insulin receptor substrate-1 in insulin signal transduction; and 5) TRIB3 mRNA and protein levels are increased by high glucose concentrations, as well as by glucose deprivation in muscle cells. These data identify TRIB3 induction as a novel molecular mechanism in human insulin resistance and diabetes. TRIB3 acts as a nutrient sensor and could mediate the component of insulin resistance attributable to hyperglycemia (i.e., glucose toxicity) in diabetes.


Sign in / Sign up

Export Citation Format

Share Document