scholarly journals Ecogenesis and primary soil formation on the East European Plain. A review

2021 ◽  
Vol 49 (1) ◽  
pp. 51-60
Author(s):  
Evgeny V. Abakumov ◽  
Elena M. Koptseva

Abstract Numerous published studies have shown that soil formation, including primary pedogenesis, is closely connected functionally, energetically and operationally with ecogenesis as a key biogenic exploration mechanism of the Earth’s surface by living organisms. The ontogenetic stage of soil evolution, especially in the initial phases, is determined by geogenic conditions and the intensity and trends of biogenic-accumulative processes in the developing ecosystem. Primary soils are considered critical in the rapid development of the initial ancient biosphere, supporting multiple environmental possibilities for ecosystems in that stage of their formation. Currently, similar models of correlated soil formation and ecogenesis are actualised when new substrates appear suitable for biogenic-abiogenic interactions, which occur in both natural and anthropogenic landscapes. Biotic factors during primary pedogenesis have accumulative and transformative effects on the edaphic component complex. At this stage, the initial pedon is a key functional stage in the evolution of terrestrial ecosystems (biogeocenosis). When restoration of natural ecosystems occurs during the independent growth of exposed substrates, the natural regeneration mechanisms normally occur. These processes are based on the biogenic development of the substrate through the accumulation and transformation of organic matter.

2017 ◽  
pp. 94-108 ◽  
Author(s):  
Yu. A. Semenishchenkov

Phytogeographical features of forest vegetation at the level of lower-rank syntaxa were being discussed in literature since the early 20th century (Cajander, 1903; Sukachev, 1926; Braun-Blanquet, 1964; Kral et al., 1975; Kleopov, 1990; Bulokhov, 2003; Ellenberg, 2009), however, phytocoenologists still have no uniform interpretation and geographical maintenance of lower classification units. Forest vegetation of the European part of Russia is well studied according to Braun-Blanquet approach with association as a system of geographical subassociations. The paper offers the approaches to the reflection of geographical variations of the natural forest vegetation in the basin of the Upper Dnieper (central part of the East European Plain) at the level of lower-rank syntaxa The xeromesophytic oak woods in the basin of the Upper Dnieper belong to the East European ass. Lathyro nigri–Quercetum roboris Bulokhov et Solomeshch 2003. Floristic differentiation of this association from the similar Central European ass. Potentillo-Quercetum is given. These two associations have large blocks of geographically significant differential species that does not allow to consider them as a part of one association. The suggested approach allows to define the chorological content of units of lower syntaxonomical ranks and make regional classification schemes comparable to each other.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
R. Dinnis ◽  
A. Bessudnov ◽  
N. Reynolds ◽  
T. Devièse ◽  
A. Dudin ◽  
...  

AbstractThe Streletskian is central to understanding the onset of the Upper Palaeolithic on the East European Plain. Early Streletskian assemblages are frequently seen as marking the Neanderthal-anatomically modern human (AMH) anthropological transition, as well as the Middle-to-Upper Palaeolithic archaeological transition. The age of key Streletskian assemblages, however, remains unclear, and there are outstanding questions over how they relate to Middle and Early Upper Palaeolithic facies. The three oldest Streletskian layers—Kostenki 1 Layer V, Kostenki 6 and Kostenki 12 Layer III—were excavated by A. N. Rogachev in the mid-20th century. Here, we re-examine these layers in light of problems noted during Rogachev’s campaigns and later excavations. Layer V in the northern part of Kostenki 1 is the most likely assemblage to be unmixed. A new radiocarbon date of 35,100 ± 500 BP (OxA- X-2717-21) for this assemblage agrees with Rogachev’s stratigraphic interpretation and contradicts later claims of a younger age. More ancient radiocarbon dates for Kostenki 1 Layer V are from areas lacking diagnostic Streletskian points. The Kostenki 6 assemblage’s stratigraphic context is extremely poor, but new radiocarbon dates are consistent with Rogachev’s view that the archaeological material was deposited prior to the CI tephra (i.e. >34.3 ka BP). Multiple lines of evidence indicate that Kostenki 12 Layer III contains material of different ages. Despite some uncertainty over the precise relationship between the dated sample and diagnostic lithic material, Kostenki 1 Layer V (North) therefore currently provides the best age estimate for an early Streletskian context. This age is younger than fully Upper Palaeolithic assemblages elsewhere at Kostenki. Other “Streletskian” assemblages and Streletskian points from younger contexts at Kostenki are briefly reviewed, with possible explanations for their chronostratigraphic distribution considered. We caution that the cultural taxon Streletskian should not be applied to assemblages based simply on the presence of bifacially worked artefacts.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Nafaâ Jabeur ◽  
Nabil Sahli ◽  
Sherali Zeadally

Wireless sensor networks (WSNs) are key components in the emergent cyber physical systems (CPSs). They may include hundreds of spatially distributed sensors which interact to solve complex tasks going beyond their individual capabilities. Due to the limited capabilities of sensors, sensor actions cannot meet CPS requirements while controlling and coordinating the operations of physical and engineered systems. To overcome these constraints, we explore the ecosystem metaphor for WSNs with the aim of taking advantage of the efficient adaptation behavior and communication mechanisms of living organisms. By mapping these organisms onto sensors and ecosystems onto WSNs, we highlight shortcomings that prevent WSNs from delivering the capabilities of ecosystems at several levels, including structure, topology, goals, communications, and functions. We then propose an agent-based architecture that migrates complex processing tasks outside the physical sensor network while incorporating missing characteristics of autonomy, intelligence, and context awareness to the WSN. Unlike existing works, we use software agents to map WSNs to natural ecosystems and enhance WSN capabilities to take advantage of bioinspired algorithms. We extend our architecture and propose a new intelligent CPS framework where several control levels are embedded in the physical system, thereby allowing agents to support WSNs technologies in enabling CPSs.


2018 ◽  
Vol 51 (1) ◽  
pp. 66-72 ◽  
Author(s):  
A. T. Barabanov ◽  
S. V. Dolgov ◽  
N. I. Koronkevich ◽  
V. I. Panov ◽  
A. I. Petel’ko

Sign in / Sign up

Export Citation Format

Share Document