scholarly journals Temperature-dependent in Situ Gel of Clotrimazole: an Experimental Study

Folia Medica ◽  
2019 ◽  
Vol 61 (2) ◽  
pp. 266-276
Author(s):  
Vipul P. Patel ◽  
Harshad M. Damasiya ◽  
Pankaj Kapupara ◽  
Kalpesh C. Ashara

Abstract Background: The in-situ gel-forming polymeric formulations offer sustained and prolonged action in comparison to conventional drug delivery systems. Aim: To formulate and evaluate in situ vaginal gel of clotrimazole. Materials and methods: Poloxamer 407 (20%) was slowly added to freezing water (5°C) with constant stirring. The prepared dispersion was refrigerated for 5 h, the different concentrations of polymers were added for preliminary batches. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were performed for clotrimazole-excipients compatibility study. The final batch was prepared and evaluated for physicochemical parameters, in vitro clotrimazole release, in vitro antifungal activity, and in vivo vaginal tissue irritation test. Results: The compatibility study showed no chemical interaction between clotrimazole and excipients used. The evaluation parameters showed that clotrimazole release was in the range of 8 to 10 h, gelling temperature was in the range of 27–35°C, gelling time was in the range of 28–34 sec, pH was in the range of 4.4–4.8, and viscosities were in the range of 16.4–182.6 cP (solution form) and 10,500–20,756 cP (gel form). The zone of inhibitions for clotrimazole pure drug, the marketed vaginal gel of clotrimazole, and optimized gel formulation was 9.15±0.75 mm, 14.35±1.12 mm, and 18.85±1.56 mm, respectively (p < 0.0001, q = 5.98). An optimized gel formulation was not irritant to vaginal tissue. Conclusion: It was possible to formulate effective in situ vaginal gel for control release action of clotrimazole. Level of Evidence: IIC.

Author(s):  
DIKSHA SHARMA ◽  
SHAWETA AGARAWAL

Objective: The objective of the study was to aiming to formulate and evaluate temperature based in situ nasal gel of sertraline HCL. Materials and Methods: Preformulation studies of sertraline hydrochloride including tests for identification, solubility studies, Fourier-transformer infrared (FTIR) spectroscopy, melting point determination, and other studies were carried out and compared with the specification as per literature. The solubility of sertraline hydrochloride was determined in different solvents such as in distilled water, ethanol, acetone, isopropyl alcohol, and 2-propanol. Each value for solubility was determined in triplicate and average values were reported. The drug excipient compatibility study was determined by FTIR. Thermal analysis was performed using a differential scanning calorimetric equipped with a computerized data station. The UV spectrum of sertraline hydrochloride was obtained using UV JascV630. The in situ gel formulation was prepared by changing the concentration and using only one polymer (Carbopol 934) has been used at the same concentration. Mucoadhesive strength and in vitro permeation study were determined using gout nasal mucosal membrane, whereas in vitro drug release study was carried out using diffusion cell through egg membrane as a biological membrane. The stability studies were conducted according to ICH guidelines. Results: The FTIR studies of formulation show no interaction between drug and excipient. In situ gel was prepared using Carbopol 934 and Poloxamer 407 to improve its adhesion property. The optimized formulation (F6) was transparent and clear in appearance with 101.15% drug content. The sol-gel transformation of in situ gel was found at temperature 34.92°C with immediate gelation property. The in vitro drug release of optimized formulation was found 95.80% drug release in 8 h. Formulations F4 and F6 showed immediate gelation within 60 s and remained stable for an extended period. All the formulations were liquid at room temperature and underwent rapid gelation on contact with simulated nasal fluid. Conclusion: The results concluded that the formulations of in situ nasal gel showing to improve the bioavailability through its longer residence time and ability to sustain drug release.


2018 ◽  
Vol 10 (4) ◽  
pp. 153 ◽  
Author(s):  
Fadia Yassir Al-bazzaz ◽  
Myasar Al-kotaji

Objective: This work aims to formulate and evaluate an ophthalmic in-situ gel of ciprofloxacin hydrochloride (HCl) using poloxamer 407 (P407) as a gelling agent and hydroxypropyl methylcellulose (HPMC) as a viscosity modifier. The objective of this work was to prolong the contact time as the in-situ gel will be converted into a gel upon contact with the cul-de-sac. Methods: Ciprofloxacin HCl ophthalmic in-situ gel was prepared by utilizing (P407) as a temperature-dependent polymer while hydroxypropyl methylcellulose was used as a viscosity modifier. The system was evaluated for physical appearance, pH, drug content, sterility, irritancy and stability. In addition, gelation temperature and a viscosity at different shear rates and different temperatures were studied. The compatibility of the polymer with ciprofloxacin was studied by using fourier transform infrared spectroscopy (FTIR). The in vitro release of the drug was also evaluated and supported by a preliminary in vivo test.Results: The results showed that the prepared formulas were clear, with acceptable pH and the drug contents were within the acceptable limits. FTIR results detected no incompatibility between poloxamer 407 and ciprofloxacin HCl. Notably, the viscosity of the system showed a pseudoplastic behaviour where a reduction in viscosity upon increasing the shear rate was observed. The in vitro release study confirmed the prolongation of the release of the optimized formula (F6) up to 8 h. Upon application of F6 into eyes of rabbits there was no irritancy. In addition, in vivo elimination study showed a prolonged contact for the in-situ gel in comparison with the rapid clearance of eye drop. Stability study indicated the stability of the optimized formula (F6). Conclusion: The prepared optimized formula (F6) represents a successful, safe, stable and prolonged release in-situ gel formula of ciprofloxacin.


2020 ◽  
Vol 70 (3) ◽  
pp. 411-422 ◽  
Author(s):  
Fugen Gu ◽  
Huimin Fan ◽  
Zhixin Cong ◽  
Shuang Li ◽  
Yi Wang ◽  
...  

AbstractDonepezil hydrochloride thermosensitive in situ gel for nasal delivery was prepared by using Poloxamer 407 and Poloxamer 188 as thermoreversible polymers, hydroxypropyl-β-cyclodextrin and ethylparaben as permeation enhancer and preservative, respectively. The gelation temperature and time, pH value of the gel formulation were found to meet the requirements for nasal administration. The in vitro erosion and in vitro release tests exhibited obvious drug sustained release behavior. Meantime, main pharmacokinetic parameters such as tmax, cmax and AUC in plasma as well as in brain were significantly different between the nasal gel formulation and intragastric drug solution in rats (p < 0.01). The relative bioavailability and drug targeting efficiency of the gel formulation were calculated to be 385.6 and 151.2 %, respectively. Thus, the drug gel formulation might be a potential new delivery system for treatment of Alzheimer’s disease due to its higher bioavailability and better distribution to brain when compared to oral route.


Author(s):  
Zainab E Jassim ◽  
Mais F Mohammed ◽  
Zainab Ahmed Sadeq

Objective: The aim of the present work was to formulate and evaluate fast dissolving film containing lornoxicam.Materials and Methods: To prepare the film, hydroxypropyl methylcellulose E5 and polyvinyl alcohol (PVA) were used as film-forming polymers by solvent casting method. Glycerine was used as plasticizer, aspartame, and mannitol as sweetener. All prepared films were evaluated for its weight variation, disintegration time, thickness, drug content, pH, dissolution study, and folding endurance. The drug-excipients compatibility study was done using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR).Results: Satisfactory results obtained when PVA was used as film-forming polymer, and the drug was dispersed in the polymer solution using poloxamer 407 as a solubilizing agent. Formulation F2 is considered as the optimized formulation as it showed good folding endurance (>300), faster disintegration rate (30 s), and maximum in vitro drug release (87%) within 5 min. DSC and FTIR studies showed no interaction between drug and the polymers.Conclusion: It can be concluded from the study that the fast dissolving film can be prepared for poorly water-soluble drug lornoxicam using PVA as a suitable film-forming polymer.


2020 ◽  
Author(s):  
Yuan Gao ◽  
Chao Huang ◽  
Jiyuan Chen ◽  
Zongguang Tai ◽  
Yan Li ◽  
...  

Abstract Hypertonic saline solution is used for endoscopic submucosal dissection (ESD) as a submucosal fluid cushion (SFC). However, short duration time and side effects like perforation and bleeding have limited the application of SFC. Here, an in-situ gel crosslinked acrylate/thiol Poloxamer 407 (PA-PSH) was used as an SFC for ESD to avoid perforation, and the feasibility and safety of the PA-PSH for ESD was evaluated in vitro and in vivo. PA-PSH thermal injection led to a longer-lasting elevation with clearer margins as compared with glycerol, with a high mucosal elevation induced by thiol-ene crosslinked acrylate Poloxamer 407 (PA) and thiol-capped Poloxamer 407 (PSH) in physiological conditions. ESD was achieved precisely without obvious adverse effects and tissue damage. The PA-PSH in-situ gel provides an excellent submucosal injection system, which has great potential to improve the ESD technique.


2020 ◽  
Author(s):  
Yuan Gao ◽  
Chao Huang ◽  
Jiyuan Chen ◽  
Zongguang Tai ◽  
Yan Li ◽  
...  

Abstract Background: Hypertonic saline solution is used for endoscopic submucosal dissection (ESD) as a submucosal fluid cushion (SFC). However, the application of SFC is limited by challenges including a short effect duration as well as increased risk of perforation and bleeding.Methods: An in-situ gel crosslinked acrylate/thiol Poloxamer 407 (PA-PSH) can be used as a novel SFC for ESD to avoid perforation, and the feasibility and safety of the PA-PSH for ESD was evaluated in vitro and in vivo .Results: PA-PSH thermal injection led to a longer-lasting elevation with clearer margins as compared with glycerol, with a high mucosal elevation induced by thiol-ene reaction in physiological conditions between acrylate Poloxamer 407 (PA) and thiol-capped Poloxamer 407 (PSH). Precise ESD along the margins of the elevated mucosa was achieved without obvious adverse effects such as bleeding, perforation and tissue damage.Conclusion: The PA-PSH in-situ gel provides an excellent submucosal injection system, which has great potential to improve the ESD technique.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2020 ◽  
Author(s):  
Wenhao Zhou ◽  
Teng Zhang ◽  
Jianglong Yan ◽  
QiYao Li ◽  
Panpan Xiong ◽  
...  

2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


Sign in / Sign up

Export Citation Format

Share Document