scholarly journals OPHTHALMIC IN-SITU SUSTAINED GEL OF CIPROFLOXACIN, PREPARATION AND EVALUATION STUDY

2018 ◽  
Vol 10 (4) ◽  
pp. 153 ◽  
Author(s):  
Fadia Yassir Al-bazzaz ◽  
Myasar Al-kotaji

Objective: This work aims to formulate and evaluate an ophthalmic in-situ gel of ciprofloxacin hydrochloride (HCl) using poloxamer 407 (P407) as a gelling agent and hydroxypropyl methylcellulose (HPMC) as a viscosity modifier. The objective of this work was to prolong the contact time as the in-situ gel will be converted into a gel upon contact with the cul-de-sac. Methods: Ciprofloxacin HCl ophthalmic in-situ gel was prepared by utilizing (P407) as a temperature-dependent polymer while hydroxypropyl methylcellulose was used as a viscosity modifier. The system was evaluated for physical appearance, pH, drug content, sterility, irritancy and stability. In addition, gelation temperature and a viscosity at different shear rates and different temperatures were studied. The compatibility of the polymer with ciprofloxacin was studied by using fourier transform infrared spectroscopy (FTIR). The in vitro release of the drug was also evaluated and supported by a preliminary in vivo test.Results: The results showed that the prepared formulas were clear, with acceptable pH and the drug contents were within the acceptable limits. FTIR results detected no incompatibility between poloxamer 407 and ciprofloxacin HCl. Notably, the viscosity of the system showed a pseudoplastic behaviour where a reduction in viscosity upon increasing the shear rate was observed. The in vitro release study confirmed the prolongation of the release of the optimized formula (F6) up to 8 h. Upon application of F6 into eyes of rabbits there was no irritancy. In addition, in vivo elimination study showed a prolonged contact for the in-situ gel in comparison with the rapid clearance of eye drop. Stability study indicated the stability of the optimized formula (F6). Conclusion: The prepared optimized formula (F6) represents a successful, safe, stable and prolonged release in-situ gel formula of ciprofloxacin.

2018 ◽  
Vol 10 (5) ◽  
pp. 76
Author(s):  
Methaq Hamad Sabar ◽  
Iman Sabah Jaafar ◽  
Masar Basim Mohsin Mohamed

Objective: The aim of this study was to formulate ketoconazole (keto) as oral floating in situ gel to slow the release of keto in the stomach.Methods: Sodium alginate (Na alginate) was used as a primary polymer in the preparation of the in situ gel and was supported by the following polymers: guar gum (GG), hydroxypropyl methylcellulose (HPMC) K4M, K15M and carbapol 940 as viscosity enhancing agents. As a consequence, and to complete the gelation process of above formulations was by adding the calcium carbonate (CaCO3). The in situ gels were investigated by the following tests: floating lag time, floating duration, viscosity, drug content, in vitro gelling studies and in vitro release study.Results: The study showed that the faster release was obtained with F1 which contained Na alginate alone. Additionally, reduction in Na alginate concentration resulted in significant increase in drug release. It was also noted that the increase in GG (viscosity enhancing polymer) concentration resulted in non-significant decrease in percent drug release and the reduction in CaCO3 concentration led to significant increase in drug release. Moreover, the release of drug was also affected by grade of viscosity enhancing polymer, the faster release was observed with the formula which contained a polymer of low viscosity (HPMC K4M) and an opposite result was with the high viscosity polymer (HPMCK15M).Conclusion: This study showed the formulation of Na alginate with GG and CaCO3, led to gain floating in situ gel and a sustained release of keto. 


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (07) ◽  
pp. 33-35
Author(s):  
A Dubey ◽  
◽  
P Prabhu ◽  
N Nair ◽  
K Beladiya ◽  
...  

The aim of the present investigation was to develop a combination of timolol maleate and travoprost niosomal in situ gelling system for the treatment of glaucoma. Niosomes were prepared by thin film hydration technique using rotary flash evaporator. A 32 factorial design was utilized to study the effect of the molar ratio of Span 60 (X1) and cholesterol (X2) on vesicle size, drug entrapment efficiency and in vitro release study. On the basis of vesicle size, maximum entrapment efficiency and in vitro release of drug, best formulations were selected for the preparation of niosomal in situ gel (Drop). On the basis of gelling time and viscosity, optimized ratio of the polymers was selected for the desired preparation. Selected niosomal batches were dispersed in carbopol 940 and HPMC K4M polymer solution (combination IF6) to form in situ gel niosomal formulations (Drop). The gelling time of the niosomal in situ gel (NIF1) was found to be the best (+++) and the viscosity was found to be 1190 cP. Zeta potential, average size analysis, polydispersibility index value was found to be -45.1 mV, 256.5 nm, 0.228 respectively. In vitro drug release was found to be within the range of 50.23 ± 0.54 to 60.23 ± 0.33% over the period of 6 h. IOP lowering activity of best formulation (NIF1) showed more significant and sustained effect than the marketed eye drops. Best formulation (NIF1) was found to be stable, sterile, non irritant and isotonic. Hence niosomal in situ gelling combination system may have the potential of bringing better application than the conventional ocular therapy with improved ocular bioavailability and increased patient compliance.


Author(s):  
ANKITA KAPOOR ◽  
G. D. GUPTA

Objective: The present research work aims at describing the formulation, optimization and evaluation of ion activated ocular in-situ gel of gatifloxacin for treatment of bacterial conjunctivitis so as to overcome patient inconvenience, precorneal drug elimination, variation in efficacy, vision blurring and frequent instillation associated with conventional eye drops and ointments. Methods: In-situ gel was prepared using gellan gum as an ion activated phase transition polymer and HPMC K100M as release retardant. Gatifloxacin was characterized by spectrophotometry. Crystalline state of the drug was determined using X Ray Diffraction study. The developed formulation exhibited instantaneous gel formation in simulated lacrimal fluid (pH 7.4), which was further evaluated for its rheology, irritancy parameters, in vitro release, trans-corneal permeation and antimicrobial activity. Results: Gatifloxacin exhibited λmax 286 nm obeying Beer Lambert’s law and pH-dependent solubility at a pH range of 2 to 4. 0.6% gellan gum and 0.4% HPMC K100M were optimized in the formulation which exhibited a viscosity of 55 cps in sol form and 325 cps in gel form with pseudoplastic behavior and prolonged in vitro release. Permeation of formulation was 75.8% in 7 h with log P of drug 0.59. Developed isotonic and non-irritant formulation had a lower apparent permeability coefficient of 8.15 x 10-5 cm/sec as compared to marketed formulation. Conclusion: A Formulation can be viewed as an efficacious medicine by virtue of its higher zone of inhibition, ability to enhance precorneal residence time and consequently ocular bioavailability with lesser frequency of administration attributed to slow and prolonged diffusion of the drug from the polymeric solutions.


2021 ◽  
Vol 14 (1) ◽  
pp. 66
Author(s):  
Mohamed Haider ◽  
Ibrahim Elsayed ◽  
Iman S. Ahmed ◽  
Ahmed R. Fares

In this work, sucrose acetate isobutyrate (SAIB) and polylactic co-glycolic acid (PLGA) were used alone or in combination as a matrix-former (MF) to prepare long-acting injectable rivastigmine (RV) in situ-forming microparticles (ISM). RV-ISM were prepared by the emulsification of an internal phase, containing the drug and the matrix former(s), into an external oily phase containing a stabilizer. The statistical design, Central Composite Design (CCD), was adopted as a quality by design (QbD) approach to optimize the formulation of RV-ISM systems. The fabricated RV-ISM systems was designed to minimize the initial burst drug release and maximize the sustainment of RV release from the ISM and ease of injection. The influence of critical formulation variables such as the matrix-former to drug (MF/D) ratio and SAIB to PLGA (S/P) ratio in the internal phase with respect to critical quality attributes (CQAs), such as the percentage drug release within the first day (Q1), the time required for 50% drug release (T50%) and the rate of injection, were studied using the CCD. The optimal RV-ISM system with the highest desirability value (0.74) was predicted to have an MF/D ratio of 11.7:1 (w/w) and an S/P ratio of 1.64:1 (w/w). The optimal RV-ISM system was assessed for its release profile, injectability, rheological properties, morphology, effect on cell viability, tolerance to γ-sterilization and in vivo performance in male albino rabbits. In vitro release studies revealed that the optimal RV-ISM system released 100% of its drug content throughout a release period of 30 days with only 15.5% drug release within the first day (Q1) and T50% of 13.09 days. Moreover, the optimal system showed a high injection rate of 1.012 mL/min, pseudoplastic flow, uniform spherical globules with homogenous particle size, minimal cytotoxicity and high tolerability to γ-sterilization. In vivo pharmacokinetic (PK) studies revealed that the rate of absorption of RV from the optimal RV-ISM system was controlled compared to a drug solution following either intramuscular (IM) or subcutaneous (SC) injection. Furthermore, the optimal RV-ISM was found to follow flip-flop PK with poor correlation between in vitro release and in vivo findings. These findings suggest that the optimal RV-ISM is a promising tool to achieve a sustained release therapy for RV; however, further investigation is still required to optimize the in vivo performance of RV-ISM.


Author(s):  
INAYATHULLA . ◽  
PRAKASH GOUDANAVAR ◽  
MOHAMMAD ALI ◽  
SHAHID UD DIN WANI ◽  
NAGARAJA SREEHARSHA

Objective: The intent to prepare and evaluate Linezolid in-situ gel in the treatment of periodontitis. Methods: pH-sensitive in-situ gel was formed by the cold method using a varying concentration of the drug, carbopol 934P and hydroxypropyl methylcellulose (HPMC) and carbopol 934P and sodium carboxy methylcellulose (CMC) (1:1,1:1.5,1:2,1:2.5). An optimized batch was selected based on gelling time and gelling capacity. The prepared in-situ gels were evaluated for appearance, pH, gelling capacity, viscosity, in vitro release studies, rheological studies, and finally, was subjected to drug content estimation and antibacterial activity test. Results: FTIR study shows drug and physical mixture were compatible with each other. The rheology of formulated in-situ gel exhibited a pseudoplastic flow pattern. this may be because when polymer concentration was increased the prepared formulations become more viscous and in turn delayed the drug release and from the prepared formulation, LF4 and SF4 have polymer concentrations i. e, 0.9% carbopol and sodium CMC showed drug release up to 12 h. Conclusion: When carbopol is appropriately mixed with other suitable polymers it forms an in-situ gel-forming system that was substantiated by the property to transform into stiff gels when the pH is increased. The in-situ gel was prepared using a combination of carbopol-HPMC and carbopol-Na CMC The formulations LF1 to SF4 showed high linearity (R2 = 0.490-0.682), indicating that the drug was released from the prepared in-situ gel by the diffusion-controlled mechanism. Thus, the formulation of batches LF4 and SF4 containing carbopol: HPMC and carbopol: NaCMC in 1:2 ratios were considered as optimum formulation based on optimum viscosity, gelling capacity and to extend the in vitro drug release.


Author(s):  
INSAN SUNAN KURNIAWANSYAH ◽  
TAOFIK RUSDIANA ◽  
HURIYATUS TSANIYAH ◽  
HANDRIAN RAMOKO ◽  
HABIBAH A. WAHAB ◽  
...  

Objective: The objective of this study was to find the best base mixture composition (poloxamer 407 and HPMC) of chloramphenicol in situ gel formula based on in vitro property (Cumulative amount of drug release). Methods: The in vitro diffusion of chloramphenicol in situ gel study was carried out using franz diffusion cells to know the effect of the Critical Process Parameters (CPPs) as independent variables (poloxamer 407 and hydroxypropyl methylcellulose (HPMC)) on the Critical Quality Attribute (CQA) as dependent variable (cumulative amount of drug release) with 22 factorial design. Results: 22 factorial design of chloramphenicol in situ gel yielded 4 variations of poloxamer 407 and HPMC bases component in %w/v as follows, F1 (5:0.45), F2 (10:0.45) F3 (5:1) and F4 (10:1). The amount of drug release results from in vitro dissolution assay were 30.60% (F1), 45.64% (F2), 58.30% (F3), and 22.50%) (F4). Conclusion: Formula 3 (F3) was considered as the best formula component in terms of in vitro assay of chloramphenicol in situ gel with a desirability value of 0.58.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 572 ◽  
Author(s):  
Ahmed Youssef ◽  
Narendar Dudhipala ◽  
Soumyajit Majumdar

Bacterial endophthalmitis (BE) is a potentially sight-threatening inflammatory reaction of the intraocular fluids or tissues caused by bacteria. Ciprofloxacin (CIP) eye drops are prescribed as first-line therapy in BE. However, frequent administration is necessary due to precorneal loss and poor ocular bioavailability. The objective of the current research was to prepare CIP containing nanostructured lipid carriers (CIP-NLCs) loaded an in situ gel system (CIP-NLC-IG) for topical ocular administration for enhanced and sustained antibacterial activity in BE treatment. CIP-NLCs were prepared by the hot homogenization method and optimized based on physicochemical characteristics and physical stability. The optimized CIP-NLC formulation was converted into CIP-NLC-IG with the addition of gellan gum as a gelling agent. Furthermore, optimized CIP-NLC and CIP-NLC-IG were evaluated for in vitro release and ex vivo transcorneal permeation studies, using commercial CIP ophthalmic solution (CIP-C) as the control. The optimized CIP-NLC formulation showed particle size, polydispersity index, zeta potential, assay and entrapment efficiency of 193.1 ± 5.1 nm, 0.43 ± 0.01, −32.5 ± 1.5 mV, 99.5 ± 5.5 and 96.3 ± 2.5%, respectively. CIP-NLC-IG with 0.2% w/v gellan gum showed optimal viscoelastic characteristics. The in vitro release studies demonstrated sustained release of CIP from CIP-NLC and CIP-NLC-IG formulations over a 24 h period. Transcorneal flux and permeability increased 4 and 3.5-fold, and 2.2 and 1.9-fold from CIP-NLC and CIP-NLC-IG formulations, respectively, when compared to CIP-C. The results demonstrate that CIP-NLC-IG could be considered as an alternate delivery system to prolong the residence time on the ocular surface after topical administration. Thus, the current CIP ophthalmic formulations may exhibit improved ocular bioavailability and prolonged antibacterial activity, which may improve therapeutic outcomes in the treatment of BE.


2020 ◽  
Vol 11 (3) ◽  
pp. 4546-4554
Author(s):  
Manish Wani ◽  
Swati Jagdale ◽  
Vishal Bhujbal ◽  
Akshay Baheti ◽  
Ashwin Kuchekar

Azithromycin (AZT) is a broad-spectrum antibiotic and is found in ocular tissues when administered systemically. AZT inhibits RNA-dependent protein synthesis and hence has effective bactericidal capability against Staphylococcus aureus, Pseudomonas aeruginosa, which are the primary causative organisms for bacterial infection. In situ ophthalmic gels are systems which undergo a sol-to-gel transformation when instilled in eyes. In situ gels overcome the shortcoming of ophthalmic drops as they get washed out and diluted due to tear fluid. The aim and objective of present study was to formulate in situ ophthalmic gelling systems of Azt and determine in vivo ocular residence time in rat eyes of Tc99 labelled Azt by Micro SPECT. The in situ gel was formulated using Poloxamer 407, which is a temperature-induced gelling agent and HPMC K4M, which is known to increases mucosal adhesivity and enhance viscosity to facilitate sustained release of drug. The formulations developed were evaluated for pH, clarity, viscosity, gelling capacity and % drug release. The selected formulation was subjected to isotonicity and In Vivo Bio-distribution studies. Experimental studies on compatibility showed no interaction between polymers and AZT. AZT was found soluble in PB6.8. All formulations were found clear immediately after preparation and after sterilization & pH after gelation was satisfactorily in the range of 6 to 7. Viscosity and Gelation capacity of in situ gel increased with increase in polymer concentration. Formulations F2 showed desired results w.r.t viscosity, gelation capacity, drug release. In Vivo Biodistribution studies of Tc99 labelled AZT by Micro SPECT showed there was a significant increase in ocular residence time of in situ gel when compared with Tc99 labelled marketed solutions.


Author(s):  
ANASUYA PATIL ◽  
PRANOTI KONTAMWAR

Objective: Ciclopirox olamine has been used as antifungal agent. It is used as topical formulation because oral route causes irritation and ulceration of GIT. In this research work, antifungal nanogel formulated to reduce size of particle, improve in-vitro release and in-vivo release. Methods: Ciclopirox olamine nanogel was prepared by homogenization technique and incorporation of gelling agent to produce nanogel. Ciclopirox olamine nanogel formulated using Carbopol 940. Results: Antigungal Nanogels (F1-F6) were subjected to FT-IR analysis and showed no interaction between the drug and excipients. The best formulation (F6) elicited the high in-vitro release of 83.42 % at 8 hours; zeta-potential and particle size, obtained values were 230 nm and -27 mV correspondingly. In-vitro release kinetic models were shown that formulation-F6 follows First-order kinetics and high regression coefficient value r2 0.9866. SEM image of the best formulation-F6 depicts that no breakage of nanogel. The differential scanning calorimetry thermogram of ciclopirox olamine was found to be 140.09.7°C. The DSC thermogram of physical mixture of carbopol 940 and Euragit-S 100 was found to be 1290C and 218 0C. DSC study of nanogel (F6) showed no interaction between drug and excipients. The best formulation-F6 was subjected to in-vivo study on mice which showed better effect in treating dermatitis. Conclusion: It would be concluded that the best formulation-F6 which elicited better in-vitro drug release and enhanced dermatitis scoring. Keywords: Ciclopirox-olamine, Eudragit-S100, Glycerol, Dermatitis, Carbopol-940, Cellophane membrane.


Author(s):  
Yasser Q Almajidi ◽  
Ahmed A Albaderi ◽  
Hasan Fadhel

Objective: The objective of this study was to prepare floating gastric in situ gel of prochlorperazine maleate (PM) using nanoemulsion technology to improve drug solubility, bioavailability, reduce dosing frequency, and patient compliance.Methods: Eight nanoemulsion formulas (F1–F8) of PM were prepared by ultrasonication method using oil, surfactants: cosurfactants (Smix) with different types, concentrations, and ratios, and deionized distilled water. The nanoemulsion formulas were characterized to select the optimum recipe from which six floating in situ gel formulas (floating nanoemulsion in situ [FNI] 1-FNI 6) were prepared using sodium alginate as gelling agent, hydroxypropyl methylcellulose (HPMCK) 4M as rate retarding polymer, calcium chloride as cross-linking agent, calcium carbonate as floating agent, and sodium citrate as buffering and neutralizing gastric acid. All FNI formulas were subjected for the evaluation to assess the formulations suitability concerning the dosage form and intended therapeutic purpose.Results: Formulation variables such as the concentration of sodium alginate, HPMCK 4M, calcium carbonate, and calcium chloride affected the gelling properties, formulation viscosity, floating behavior, and in vitro drug release. Formulation FNI 6 showed acceptable floating lag time (55±2.3 s) and >12 h floating duration time, and observe prolong release of the drug in in-situ gelling preparation.Conclusion: The prepared FNI formulas of PM could float in the gastric conditions and released the drug in a sustained manner. The present formulation was enhanced drug solubility with good retention properties and better patient compliance.


Sign in / Sign up

Export Citation Format

Share Document