scholarly journals The Influence of Verbal Instruction on Measurement Reliability and Explosive Neuromuscular Performance of the Knee Extensors

2018 ◽  
Vol 65 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Hamdi Jaafar ◽  
Hanene Lajili

Abstract The current study aimed to examine the effect of verbal instruction on explosive force production and between-session measurement reliability during maximal voluntary contractions of knee extensors. Following familiarization, 20 healthy males performed 3 maximal contractions with a “hard-and-fast” instruction and 3 maximal contractions with a “fast” instruction during 2 test-retest sessions. Knee extension maximal voluntary force (Fmax) and the maximal rate of force development (RFDmax) were measured. Maximal electromechanical delay (EMDmax), and the maximal rate of muscle activation (RMAmax) of quadriceps muscles were determined. No significant effect of instruction was observed on Fmax (p > 0.05). The RFDmax and RMAmax were significantly higher with the “fast” compared to the “hard-and-fast” instruction (36.07%, ES = 1.99 and 37.24%, ES = 0.92, respectively), whereas EMDmax was significantly lower with the “fast” instruction compared to the “hard-and-fast” instruction (-3.79%, ES = - 0.29). No significant differences between test and retest measurements were found (p < 0.05). However, the reliability of the RFDmax was higher with the fast instruction compared to the hard-and-fast instruction (CV: 7.3 vs. 16.2%; ICC: 0.84 vs. 0.56). Besides, the RFDmax was associated with the RMAmax and EMDmax with a significant effect of instruction. Data showed that the instruction given prior contracting muscle affected explosive force production and associated neuromuscular variables. As a result, the “fast” instruction may be preferred in the assessment of explosive force capacity of skeletal muscle during maximal efforts.

2018 ◽  
Vol 43 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Hamdi Jaafar ◽  
Hanene Lajili

We examined the effects of time of day and verbal instruction, separately and combined, on knee extensor neuromuscular adjustments, with special reference to rapid muscle force production capacity. Ten healthy male participants performed 4 experimental trials in counterbalanced order: morning “hard-and-fast” instruction, evening hard-and-fast instruction, morning “fast” instruction, and evening fast instruction. During each experimental trial, neuromuscular performance was assessed from the completion of 6 maximal isometric voluntary contractions (rest = 2 min) of the knee extensors with concomitant quadriceps surface electromyography recordings. For each contraction, we determined maximal voluntary force (Fmax), maximal rate of force development (RFDmax) and associated maximal electromechanical delay (EMDmax), and maximal rate of muscle activation (RMAmax). Globally, oral temperature (+2.2%), Fmax (+4.9%) and accompanying median frequency (+6.6%)/mean power frequency (+6.0%) as well as RFDmax (+13.5%) and RMAmax (+15.5%) were significantly higher in the evening than morning (p < 0.05). Conversely, evening in reference to morning values were lower for EMDmax (–4.3%, p < 0.05). Compared with a hard-and-fast instruction, RFDmax (+30.6%) and corresponding root mean square activity (+18.6%) were globally higher using a fast instruction (p < 0.05), irrespectively of the time of day. There was no significant interaction effect of time of day and verbal instruction on any parameter, except for EMDmax (p = 0.028). Despite diurnal variation in maximal or explosive force production of knee extensors and associated neuromuscular parameters, these adjustments occurred essentially independently of the verbal instruction provided.


2021 ◽  
pp. 1-11
Author(s):  
Kale Mehmet

BACKGROUND: There is insufficient knowledge about the rate of force development (RFD) characteristics over both single and multiple joint movements and the electromechanical delay (EMD) values obtained in athletes and untrained individuals. OBJECTIVE: To compare single and multiple joint functions and the neural drive of trained athletes and untrained individuals. METHODS: Eight trained athletes and 10 untrained individuals voluntarily participated to the study. The neuromuscular performance was assessed during explosive and maximum voluntary isometric contractions during leg press and knee extension related to single and multiple joint. Explosive force and surface electromyography of eight superficial lower limb muscles were measured in five 50-ms time windows from their onset, and normalized to peak force and electromyography activity at maximum voluntary force, respectively. The EMD was determined from explosive voluntary contractions (EVC’s). RESULTS: The results showed that there were significant differences in absolute forces during knee extension maximum voluntary force and EVC’s (p< 0.01) while trained athletes achieved greater relative forces than untrained individuals of EVC at all five time points (p< 0.05). CONCLUSIONS: The differences in explosive performance between trained athletes and untrained individuals in both movements may be explained by different levels of muscle activation within groups, attributed to variation in biarticular muscle function over both activities.


2014 ◽  
Vol 39 (12) ◽  
pp. 1338-1344 ◽  
Author(s):  
Israel Halperin ◽  
David Copithorne ◽  
David G. Behm

Nonlocal muscle fatigue occurs when fatiguing 1 muscle alters performance of another rested muscle. The purpose of the study was to investigate if fatiguing 2 separate muscles would affect the same rested muscle, and if fatiguing the same muscle would affect 2 separate muscles. Twenty-one trained males participated in 2 studies (n = 11; n = 10). Subjects performed 2 pre-test maximum voluntary contractions (MVCs) with the nondominant knee extensors. Thereafter they performed two 100-s MVCs with their dominant knee extensors, elbow flexors, or rested. Between and after the sets, a single MVC with the nondominant rested knee extensors was performed. Subsequently, 12 nondominant knee extensors repeated MVCs were completed. Force, quadriceps voluntary activation (VA), and electromyography (EMG) were measured. The same protocol was employed in study 2 except the nondominant elbow-flexors were tested. Study 1: Compared with control conditions, a significant decrease in nondominant knee extensors force, EMG, and VA was found under both fatiguing conditions (P ≤ 0.05; effect size (ES) = 0.91–1.15; 2%–8%). Additionally, decrements in all variables were found from the first post-intervention MVC to the last (P ≤ 0.05; ES = 0.82–2.40; 9%–20%). Study 2: No differences were found between conditions for all variables (P ≥ 0.33; ES ≤ 0.2; ≤3.0%). However, all variables decreased from the first post-intervention MVC to the last (P ≤ 0.05; ES = 0.4–3.0; 7.2%–19.7%). Whereas the rested knee extensors demonstrated nonlocal effects regardless of the muscle being fatigued, the elbow-flexors remained unaffected. This suggests that nonlocal effects are muscle specific, which may hold functional implications for training and performance.


2004 ◽  
Vol 97 (5) ◽  
pp. 1693-1701 ◽  
Author(s):  
C. J. de Ruiter ◽  
R. D. Kooistra ◽  
M. I. Paalman ◽  
A. de Haan

We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90° knee angle. Experiments were performed in subjects ( n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60°). At each knee angle, voluntary MRTD and stimulated MRTD were similar ( P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent ( P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 ± 3.1 to 83.3 ± 3.2% and were positively related ( r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.


Author(s):  
Adèle Mornas ◽  
Sebastien Racinais ◽  
Franck Brocherie ◽  
Marine Alhammoud ◽  
Robin Hager ◽  
...  

The present study aimed to determine the effect of hyperthermia on both electrochemical and mechanical components of the electromechanical delay (EMD), using very-high-frame-rate ultrasound. Electrically evoked peak twitch force, EMD, electrochemical (Dm, i.e., delay between stimulation and muscle fascicle motion) and mechanical (Tm, i.e., delay between fascicle motion and force production onset) components of EMD were assessed in sixteen participants. Assessments were conducted in a control ambient environment (CON: 26°C, 34% relative humidity) and in hot ambient environment (HOT: 46-50°C, 18% relative humidity, after ~127 min of heat exposure). Following heat exposure, gastrocnemius medialis temperature was 37.0 ± 0.6°C in HOT vs. 34.0 ± 0.8°C in CON (P < 0.001). EMD was shorter (9.4 ± 0.8 ms) in HOT than CON (10.8 ± 0.6 ms, P < 0.001). Electrochemical processes were shorter in HOT than CON (4.0 ± 0.8 ms vs. 5.5 ± 0.9 ms, respectively, P < 0.001), while mechanical processes were unchanged (P = 0.622). These results demonstrate that hyperthermia reduces electromechanical delay via accelerated electrochemical processes while force transmission along the active and passive parts of the series elastic component is not affected following heat exposure. The present study demonstrates that heat exposure accelerates muscle contraction thanks to faster electrochemical processes. Further investigations during voluntary contractions would contribute to better understand how these findings translate into motor performance.


2014 ◽  
Vol 117 (6) ◽  
pp. 658-662 ◽  
Author(s):  
Lilian Lacourpaille ◽  
François Hug ◽  
Arnaud Guével ◽  
Yann Péréon ◽  
Armelle Magot ◽  
...  

The decrease in muscle strength in patients with Duchenne muscular dystrophy (DMD) is mainly explained by a decrease in the number of active contractile elements. Nevertheless, it is possible that other electrochemical and force transmission processes may contribute. The present study aimed to quantify the effect of DMD on the relative contribution of electrochemical and force transmission components of the electromechanical delay (i.e., time lag between the onset of muscle activation and force production) in humans using very high frame rate ultrasound. Fourteen patients with DMD and thirteen control subjects underwent two electrically evoked contractions of the biceps brachii with the ultrasound probe over the muscle belly. The electromechanical delay was significantly longer in DMD patients compared with controls (18.5 ± 3.9 vs. 12.5 ± 1.4 ms, P < 0.0001). More precisely, DMD patients exhibited a longer delay between the onset of muscle fascicles motion and force production (13.6 ± 3.1 vs. 7.9 ± 2.0 ms, P < 0.0001). This delay was correlated to the chronological age of the DMD patients ( r = 0.66; P = 0.01), but not of the controls ( r = −0.45; P = 0.10). No significant difference was found for the delay between the onset of muscle stimulation and the onset of muscle fascicle motion. These results highlight the role of the alteration of muscle force transmission (delay between the onset of fascicle motion and force production) in the impairments of the contraction efficiency in patients with DMD.


2011 ◽  
Vol 46 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Eleftherios Kellis ◽  
Andreas Zafeiridis ◽  
Ioannis G. Amiridis

Abstract Context: The effects of fatigue on impact loading during running are unclear, with some authors reporting increased impact forces and others reporting decreased forces. Objective: To examine the effects of isokinetic fatigue on muscle cocontraction ratios about the knee and ankle during running. Design: Cross-sectional study. Setting: Neuromechanics laboratory. Patients or Other Participants: Female middle-distance runners (age  =  21.3 ± 1.93 years) with at least 5 years of training experience. Intervention(s): Participants ran on the treadmill at 3.61 m/s before and immediately after the fatigue protocol, which consisted of consecutive, concentric knee extension-flexion at 120°/s until they could no longer produce 30% of the maximum knee-extension moment achieved in the familiarization session for 3 consecutive repetitions. Main Outcome Measure(s): Electromyographic (EMG) amplitude of the vastus medialis (VM), biceps femoris (BF), gastrocnemius (GAS), and tibialis anterior (TA) was recorded using surface electrodes. Agonist∶antagonist EMG ratios for the knee (VM∶BF) and ankle (GAS∶TA) were calculated for the preactivation (PR), initial loading response (LR1), and late loading response (LR2) phases of running. Hip-, knee-, and ankle-joint angular displacements at initial foot contact were obtained from 3-dimensional kinematic tracings. Results: Fatigue did not alter the VM∶BF EMG ratio during the PR phase (P &gt; .05), but it increased the ratio during the LR1 phase (P &lt; .05). The GAS∶TA EMG ratio increased during the LR1 phase after fatigue (P &lt; .05) but remained unchanged during the PR and LR2 phrases (P &gt; .05). Conclusions: The increased agonist EMG activation, coupled with reduced antagonist EMG activation after impact, indicates that the acute decrease in muscle strength capacity of the knee extensors and flexors results in altered muscle-activation patterns about the knee and ankle before and after foot impact.


2015 ◽  
Vol 40 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Ricci Hannah ◽  
Jonathan P. Folland

This study examined the relationship of muscle-tendon unit (MTU) stiffness and explosive force production during voluntary and evoked contractions of the knee extensors. Thirty-four untrained participants performed a series of explosive voluntary and electrically evoked (octets (8 pulses, 300 Hz) via femoral nerve stimulation) isometric contractions. Maximum voluntary force (MVF) was assessed during maximum voluntary contractions. Explosive force production was assessed as the time taken, from force onset (0 N), to achieve specific levels of absolute (25–300 N) and relative force (5%–75% MVF) during the explosive contractions. Ultrasonic images of the vastus lateralis were recorded during 10-s ramp contractions to assess MTU stiffness, which was expressed in absolute (N·mm−1) and relative (to MVF and resting tendon-aponeurosis length) terms. Bivariate correlations suggested that absolute MTU stiffness was associated with voluntary explosive force (time to achieve 150–300 N: r = –0.35 to –0.54, P < 0.05). However, no relationships between stiffness and voluntary explosive force were observed when the influence of MVF was removed, either via partial correlations of absolute values (P ≥ 0.49) or considering relative values (P ≥ 0.14). Similarly, absolute MTU stiffness was related to explosive force during evoked octet contractions (r = –0.41 to –0.64, P < 0.05), but these correlations were no longer present when accounting for the influence of MVF (P ≥ 0.15). Therefore, once maximum strength was considered, MTU stiffness had no independent relationship with voluntary explosive force production or the evoked capacity for explosive force.


2018 ◽  
Vol 124 (4) ◽  
pp. 970-979 ◽  
Author(s):  
Harrison T. Finn ◽  
David M. Rouffet ◽  
David S. Kennedy ◽  
Simon Green ◽  
Janet L. Taylor

During fatiguing voluntary contractions, the excitability of motoneurons innervating arm muscles decreases. However, the behavior of motoneurons innervating quadriceps muscles is unclear. Findings may be inconsistent because descending cortical input influences motoneuron excitability and confounds measures during exercise. To overcome this limitation, we examined effects of fatigue on quadriceps motoneuron excitability tested during brief pauses in descending cortical drive after transcranial magnetic stimulation (TMS). Participants ( n = 14) performed brief (~5-s) isometric knee extension contractions before and after a 10-min sustained contraction at ~25% maximal electromyogram (EMG) of vastus medialis (VM) on one ( n = 5) or two ( n = 9) days. Electrical stimulation over thoracic spine elicited thoracic motor evoked potentials (TMEP) in quadriceps muscles during ongoing voluntary drive and 100 ms into the silent period following TMS (TMS-TMEP). Femoral nerve stimulation elicited maximal M-waves (Mmax). On the 2 days, either large (~50% Mmax) or small (~15% Mmax) TMS-TMEPs were elicited. During the 10-min contraction, VM EMG was maintained ( P = 0.39), whereas force decreased by 52% (SD 13%) ( P < 0.001). TMEP area remained unchanged ( P = 0.9), whereas large TMS-TMEPs decreased by 49% (SD 28%) ( P = 0.001) and small TMS-TMEPs by 71% (SD 22%) ( P < 0.001). This decline was greater for small TMS-TMEPs ( P = 0.019; n = 9). Therefore, without the influence of descending drive, quadriceps TMS-TMEPs decreased during fatigue. The greater reduction for smaller responses, which tested motoneurons that were most active during the contraction, suggests a mechanism related to repetitive activity contributes to reduced quadriceps motoneuron excitability during fatigue. By contrast, the unchanged TMEP suggests that ongoing drive compensates for altered motoneuron excitability. NEW & NOTEWORTHY We provide evidence that the excitability of quadriceps motoneurons decreases with fatigue. Our results suggest that altered intrinsic properties brought about by repetitive activation of the motoneurons underlie their decreased excitability. Furthermore, we note that testing during voluntary contraction may not reflect the underlying depression of motoneuron excitability because of compensatory changes in ongoing voluntary drive. Thus, this study provides evidence that processes intrinsic to the motoneuron contribute to muscle fatigue of the knee extensors.


Sign in / Sign up

Export Citation Format

Share Document