scholarly journals The Impact of Radiation Effect on MHD Stagnation-Point Flow of a Nanofluid over an Exponentially Stretching Sheet in the Presence of Chemical Reaction

2019 ◽  
Vol 24 (4) ◽  
pp. 125-139
Author(s):  
G. Narender ◽  
G. Sreedhar Sarma ◽  
K. Govardhan

Abstract The present study is to investigate the effect of the chemical reaction parameter on stagnation point flow of magnetohydrodynamics field past an exponentially stretching sheet by considering a nanofluid. The problem is governed by governing coupled nonlinear partial differential equations with appropriate boundary conditions. The transformed non-dimensional and coupled governing ordinary differential equations are solved numerically using the fourth order Adams-Bashforth Moulton method. The effects of various dimensionless parameters on velocity, temperature and concentration fields are studied and then the results are presented in both tabular and graphical forms.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


2020 ◽  
Vol 11 ◽  
pp. 1303-1315
Author(s):  
Ganji Narender ◽  
Kamatam Govardhan ◽  
Gobburu Sreedhar Sarma

This article proposes a numerical model to investigate the impact of the radiation effects in the presence of heat generation/absorption and magnetic field on the magnetohydrodynamics (MHD) stagnation point flow over a radially stretching sheet using a Casson nanofluid. The nonlinear partial differential equations (PDEs) describing the proposed flow problem are reduced to a set of ordinary differential equations (ODEs) via suitable similarity transformations. The shooting technique and the Adams–Moulton method of fourth order are used to obtain the numerical results via the computational program language FORTRAN. Nanoparticles have unique thermal and electrical properties which can improve heat transfer in nanofluids. The effects of pertinent flow parameters on the nondimensional velocity, temperature and concentration profiles are presented. Overall, the results show that the heat transfer rate increases for higher values of the radiation parameter in a Casson nanofluid.


Author(s):  
J. O. Ouru ◽  
W. N. Mutuku ◽  
A. S. Oke

Flow of fluids subjected to thermal radiation has enormous application in polymer processing, glass blowing, cooling of nuclear reactant and harvesting solar energy. This paper considers the MHD stagnation point flow of non-Newtonian pseudoplastic Williamson fluid induced by buoyancy in the presence of thermal radiation. A system of nonlinear partial differential equations suitable to describe the MHD stagnation point flow of Williamson fluid over a stretching sheet is formulated and then transformed using similarity variables to boundary value ordinary differential equations. The graphs depicting the effect of thermal radiation parameter, buoyancy and electromagnetic force on the fluid velocity and temperature of the stagnation point flow are given and the results revealed that increase in buoyancy leads to an increase in the overall velocity of the flow but a decrease in the temperature of the flow.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
A. Malvandi ◽  
F. Hedayati ◽  
G. Domairry

This paper deals with the steady two-dimensional stagnation point flow of nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. The employed model for nanofluid includes two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of Brownian diffusion and thermophoresis simultaneously. The basic partial boundary layer equations have been reduced to a two-point boundary value problem via similarity variables and solved analytically via HAM. Effects of governing parameters such as heat generation/absorption λ, stretching parameter ε, thermophoresis , Lewis number Le, Brownian motion , and Prandtl number Pr on heat transfer and concentration rates are investigated. The obtained results indicate that in contrast with heat transfer rate, concentration rate is very sensitive to the abovementioned parameters. Also, in the case of heat generation , despite concentration rate, heat transfer rate decreases. Moreover, increasing in stretching parameter leads to a gentle rise in both heat transfer and concentration rates.


Author(s):  
Siti Nur Haseela Izani ◽  
Anati Ali

An analysis has been carried out to study a problem of the chemical reaction effects on magnetohydrodynamics (MHD) mixed convective boundary layer flow with a fluid-particle suspension due to an exponentially stretching sheet. The effects of magnetic field and mass transfer are taken into account for the first time in the dusty fluid over the exponentially stretching sheet. The governing partial nonlinear differential equations corresponding to the momentum, energy and concentration are converted into a system of ordinary differential equations by using similarity transformations. The relevant dimensionless equations are then solved numerically using Runge-Kutta-Fehlberg fourth fifth order method (RKF45) with the help of Maple symbolic software. The influence of physical parameters on the velocity, temperature and concentration distributions for both phases were discussed numerically and presented in details through plotted graphs and tables. Also, the numerical values of skin friction coefficient, Nusselt and Sherwood number of the governing parameters are analyzed and discussed in details. The outcomes show that the reaction parameter affects the fluid flow whereas the magnetic field retards the fluid flow. A comparative study of the present results with the previous study provides an excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document