scholarly journals Buoyancy-Induced MHD Stagnation Point Flow of Williamson Fluid with Thermal Radiation

Author(s):  
J. O. Ouru ◽  
W. N. Mutuku ◽  
A. S. Oke

Flow of fluids subjected to thermal radiation has enormous application in polymer processing, glass blowing, cooling of nuclear reactant and harvesting solar energy. This paper considers the MHD stagnation point flow of non-Newtonian pseudoplastic Williamson fluid induced by buoyancy in the presence of thermal radiation. A system of nonlinear partial differential equations suitable to describe the MHD stagnation point flow of Williamson fluid over a stretching sheet is formulated and then transformed using similarity variables to boundary value ordinary differential equations. The graphs depicting the effect of thermal radiation parameter, buoyancy and electromagnetic force on the fluid velocity and temperature of the stagnation point flow are given and the results revealed that increase in buoyancy leads to an increase in the overall velocity of the flow but a decrease in the temperature of the flow.

Author(s):  
OD Makinde ◽  
WA Khan ◽  
ZH Khan

This paper investigates the combined effects of buoyancy forces, homogeneous chemical reaction, thermal radiation, partial slip, heat source, Thermophoresis and Brownian motion on hydromagnetic stagnation point flow of nanofluid with heat and mass transfer over a stretching convective surface. The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. Using similarity transformation, the governing nonlinear partial differential equations are reduced to a set of nonlinear ordinary differential equations which are solved numerically by employing by shooting method coupled with Runge–Kutta Fehlberg integration technique. Graphical results showing the effects of various thermophysical parameters on the velocity, temperature, nanoparticle concentration, local skin friction, local Nusselt number and local Sherwood number are presented and discussed quantitatively.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
A. Sinha ◽  
J. C. Misra

In this paper, the steady magnetohydrodynamic (MHD) stagnation point flow of an incompressible viscous electrically conducting fluid over a stretching sheet has been investigated. Velocity and thermal slip conditions have been incorporated in the study. The effects of induced magnetic field and thermal radiation have also been duly taken into account. The nonlinear partial differential equations arising out of the mathematical analysis of the problem are transformed into a system of nonlinear ordinary differential equations by using similarity transformation and boundary layer approximation. These equations are solved by developing an appropriate numerical method. Considering an illustrative example, numerical results are obtained for velocity, temperature, skin friction, and Nusselt number by considering a chosen set of values of various parameters involved in the study. The results are presented graphically/in tabular form.


Author(s):  
A Zaib ◽  
MM Rashidi ◽  
AJ Chamkha ◽  
NF Mohammad

This research peruses the characteristics of nanoparticles on stagnation point flow of a generalized Newtonian Carreau fluid past a nonlinear stretching sheet with nonlinear thermal radiation. The process of mass transfer is modeled using activation energy and binary chemical reaction along with the Brownian motion and thermophoresis. For energy activation a modified Arrhenius function is invoked. With regard to the solution of the governing differential equations, suitable transformation variables are used to obtain the system of nonlinear ordinary differential equations before being numerically solved using the shooting method. Graphical results are shown in order to scrutinize the behavior of pertinent parameters on velocity, temperature profiles, and concentration of nanoparticle. Also, the behavior of fluid flow is investigated through the coefficient of the skin friction, Nusselt number, Sherwood number, and streamlines. Results showed that the velocity ratio parameter serves to increase the velocity of fluid and reduces the temperature distribution and nanoparticle concentration. The results were compared with the available studies and were found to be in excellent agreement.


2019 ◽  
Vol 24 (4) ◽  
pp. 125-139
Author(s):  
G. Narender ◽  
G. Sreedhar Sarma ◽  
K. Govardhan

Abstract The present study is to investigate the effect of the chemical reaction parameter on stagnation point flow of magnetohydrodynamics field past an exponentially stretching sheet by considering a nanofluid. The problem is governed by governing coupled nonlinear partial differential equations with appropriate boundary conditions. The transformed non-dimensional and coupled governing ordinary differential equations are solved numerically using the fourth order Adams-Bashforth Moulton method. The effects of various dimensionless parameters on velocity, temperature and concentration fields are studied and then the results are presented in both tabular and graphical forms.


2021 ◽  
Vol 10 (9) ◽  
pp. 3273-3282
Author(s):  
M.E.H. Hafidzuddin ◽  
R. Nazar ◽  
N.M. Arifin ◽  
I. Pop

The problem of steady laminar three-dimensional stagnation-point flow on a permeable stretching/shrinking sheet with second order slip flow model is studied numerically. Similarity transformation has been used to reduce the governing system of nonlinear partial differential equations into the system of ordinary (similarity) differential equations. The transformed equations are then solved numerically using the \texttt{bvp4c} function in MATLAB. Multiple solutions are found for a certain range of the governing parameters. The effects of the governing parameters on the skin friction coefficients and the velocity profiles are presented and discussed. It is found that the second order slip flow model is necessary to predict the flow characteristics accurately.


Sign in / Sign up

Export Citation Format

Share Document