scholarly journals Effects of Rotation on Transient Fluid Flow and Heat Transfer Through a Curved Square Duct: The Case of Negative Rotation

2021 ◽  
Vol 26 (4) ◽  
pp. 29-50
Author(s):  
Mohammad Sanjeed Hasan ◽  
Md. Tusher Mollah ◽  
Dipankar Kumar ◽  
Rabindra Nath Mondal ◽  
Giulio Lorenzini

Abstract The fluid flow and heat transfer through a rotating curved duct has received much attention in recent years because of vast applications in mechanical devices. It is noticed that there occur two different types of rotations in a rotating curved duct such as positive and negative rotation. The positive rotation through the curved duct is widely investigated while the investigation on the negative rotation is rarely available. The paper investigates the influence of negative rotation for a wide range of Taylor number (−10 ≤ Tr ≤ −2500) when the duct itself rotates about the center of curvature. Due to the rotation, three types of forces including Coriolis, centrifugal, and buoyancy forces are generated. The study focuses and explains the combined effect of these forces on the fluid flow in details. First, the linear stability of the steady solution is performed. An unsteady solution is then obtained by time-evolution calculation and flow transition is determined by calculating phase space and power spectrum. When Tr is raised in the negative direction, the flow behavior shows different flow instabilities including steady-state, periodic, multi-periodic, and chaotic oscillations. Furthermore, the pattern variations of axial and secondary flow velocity and isotherms are obtained, and it is found that there is a strong interaction between the flow velocities and the isotherms. Then temperature gradients are calculated which show that the fluid mixing and the acts of secondary flow have a strong influence on heat transfer in the fluid. Diagrams of unsteady flow and vortex structure are further sketched and precisely elucidate the curvature effects on unsteady fluid flow. Finally, a comparison between the numerical and experimental data is discussed which demonstrates that both data coincide with each other.

2001 ◽  
Vol 124 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J. Cadafalch ◽  
C. D. Pe´rez-Segarra ◽  
R. Co`nsul ◽  
A. Oliva

This work presents a post-processing tool for the verification of steady-state fluid flow and heat transfer finite volume computations. It is based both on the generalized Richardson extrapolation and the Grid Convergence Index GCI. The observed order of accuracy and a error band where the grid independent solution is expected to be contained are estimated. The results corresponding to the following two and three-dimensional steady-state simulations are post-processed: a flow inside a cavity with moving top wall, an axisymmetric turbulent flow through a compressor valve, a premixed methane/air laminar flat flame on a perforated burner, and the heat transfer from an isothermal cylinder enclosed by a square duct. Discussion is carried out about the certainty of the estimators obtained with the post-processing procedure. They have been shown to be useful parameters in order to assess credibility and quality to the reported numerical solutions.


Author(s):  
C. Abid ◽  
M. Medale ◽  
F. Koffi ◽  
F. Papini ◽  
A. Benderradji

The emphasis of this communication is to make a synthesis of several results we have obtained in various mixed convection configurations. This study has been conducted for circular or rectangular ducts submitted to different ways of heating (vertical or horizontal thermal gradient in the rectangular case and combined vertical and horizontal in the circular case). The bibliography is rather poor for mixed convection in liquids, so the chosen working fluid used here is water. Moreover, a wide range of forced fluid flow and heat flux rates has been considered spreading from laminar to turbulent flow. The characterization of fluid flow and heat transfer regimes is based on temporal recording of temperature measurements obtained in several locations by means of thermocouples or infrared thermography. The analysis of these temperature signals highlights several regimes depending on control parameters. The flow structure in the cases of uniformly heated circular duct and the rectangular one heated from below is constituted of two longitudinal rolls and we notice only one roll in the case of the rectangular duct submitted to the horizontal thermal gradient. For low Reynolds and Rayleigh Numbers, the behavior of all these configurations is stable, however the increasing of these parameters induces thermal instability in the case of circular and rectangular ducts heated from below. That means that the thermal vertical gradient is responsible of the occurring of the thermal instability. This result shows that the horizontal thermal gradient is a stabilizing gradient while the vertical one is a destabilizing one. As this instability enhances heat transfer, it will be very helpful to characterize and to identify the domain where it is occurring in order to prevent or to provoke it depending on the expected performance of the heat exchanger. In this paper, we propose to establish a diagram showing the domain of occurrence of this instability for the various cases cited above and to describe the fluid flow and heat transfer associated to these configurations.


Author(s):  
Zhaoqing Ke ◽  
Jian Pu ◽  
Jianhua Wang ◽  
Lei Wang ◽  
Zhiqiang Zhang ◽  
...  

The characteristics of fluid flow and heat transfer within a smooth three-pass channel of a real low pressure (LP) turbine blade have been investigated through experimental and numerical approaches. The serpentine channel consists of two inlet passes, two dividing walls, two 180 degree bends, twenty-five exits at the trailing edge, and two exits at the blade tip. In the experiments, purified water was used as working medium, the secondary flow patterns at five cross-sections were captured by a particle image velocimetry (PIV) system, the inlet Reynolds number was controlled by a turbine flow meter, and the mass flow rate ejected from each exit was measured by rotameters. Using the commercial software ANSYS CFX 13.0, numerical investigations were carried out. The practicability of four turbulence models, the SSG RSM, SST k-ω, RNG k-ε and standard k-ε models, were estimated. Through qualitative and quantitative comparisons of the secondary flow patterns, local velocity variation trends and mass flow rates between the experimental data and numerical results, the SSG RSM was selected as the most appropriate model in the following numerical investigations. Using ideal gas as working medium, the impacts of Reynolds numbers and rotation numbers on the heat transfer performances were numerically investigated. The numerical results predicted three interesting phenomena: 1) The locally averaged Nusselt number increases generally with the inlet Reynolds numbers. However, the increasing amplitude is significantly different from the correlation suggested by Dittus-Boelter, Nuo = 0.023Re0.8Pr0.4. The effect of the Reynolds number on the Nusselt number is substantially enhanced due to the serpentine channel design with two 180 degree-bends. The enhancement amplitude is described by two fitted coefficients based on Dittus-Boelter correlation. 2) Under a rotation condition, in the 1st and 3rd passes, the enhancement amplitude of the average Nusselt number on the pressure side (PS) is more significant than that on the suction side (SS), whereas in the 2nd pass, the enhancement amplitude on the PS is lower than that on the SS. 3) In the 3rd pass, a higher rotation number leads to a more uniform distribution of the local Nusselt number along the streamwise direction on both the PS and SS.


2018 ◽  
Vol 240 ◽  
pp. 01025
Author(s):  
Muthukannan Marimuthu ◽  
Uthayakumar ◽  
Rajesh Kanna P ◽  
Paweł Ocłoń ◽  
Jan Taler ◽  
...  

The numerical solution solution is obtained for fluid flow and heat transfer in a confined impinging slot on a solid block with the presence of baffles. In order to consider the effect of baffle shape the rectangular and semi circular baffles are considered and for the effect for Reynolds number the Reynolds number is varied from 100 to 300 with the step of 50. The present study reveals the vital impact of Baffle shape and Reynolds number (Re) on the fluid flow and heat transfer characteristics over a wide range. It is finally added that the presence of baffle improves the Nusselt number. The Nusselt number increases with the increase of Reynolds number. The present study proved that, the primary peak of Nusselt number occurs nearer to the reattachment length. The secondary peak of Nusselt number occurs nearer to the baffle. It is observed that for semi circle baffle the velocity attains maximum one compared to rectangular baffle.


Sign in / Sign up

Export Citation Format

Share Document