Characteristics of rapeseed oil cake using nitrogen adsorption

2013 ◽  
Vol 27 (3) ◽  
pp. 329-334 ◽  
Author(s):  
Z. Sokołowska ◽  
G. Bowanko ◽  
P. Boguta ◽  
J. Tys ◽  
K. Skiba

Abstract Adsorption of nitrogen on the rapeseed oil cake and rapeseed oil cake with wheat meal extrudates was investigated. The results are presented as adsorption-desorption isotherms. The Brunauer-Emmet and Teller equation was used to analyse the experimental sorption data. To obtain estimates of the surface area and surface fractal dimension, the sorption isotherms were analyzed using the Brunauer-Emmet and Teller and Frenkel-Halsey-Hill equations. Mesopore analysis was carried out using the Dollimore and Heal method. The properties and surface characteristic of rapeseed oil cake extrudates are related to different basic properties of particular samples and duration of the extrusion process. Extrusion conditions lead to essential differences in particular products. For all kinds of rapeseed oil cakes the amount of adsorbed nitrogen was different, but for the rapeseed oil cake extrudates a large amount of adsorbed nitrogenwas observed. The average surface area of the rapeseed oil cake extrudates was about 6.5-7.0 m2 g-1, whereas it was equal to about 4.0-6.0 m2 g-1 for rapeseed oil cake with the wheat meal extrudates. In the case of non-extruded rapeseed oil cake and wheat meal, the dominant group included ca. 2 and 5 nmpores. The values of surface fractal dimension suggested that the surface of the extrudates was more homogenous than that of the raw material. Duration of the extrusion process to 80 s resulted in a decrease in the specific surface area, surface fractal dimension, and porosity of the extrudates.

2012 ◽  
Vol 212-213 ◽  
pp. 236-240 ◽  
Author(s):  
Yin Jun Zhou ◽  
Fei Li ◽  
Li Chen ◽  
Zhong Wu Jin ◽  
Jun Wang

Fractal theory is used to describe river bed form. Based on improvements in some aspects of Surface area – Scale Method, such as, estimation of surface area, boundary treatment and so on, the calculation method of surface fractal dimension with irregular boundary is obtained, and the new method has good application on the bed surface fractal dimension calculation. The fractal characteristics of river bed surface morphology are discussed by combination with river-pattern, river regime, river process and changes of BSD. BSD can be used to study some related problems, such as analysis of river regime, distinction of river pattern, calculation of river resistance and so on.


2011 ◽  
Vol 76 (10) ◽  
pp. 1403-1410 ◽  
Author(s):  
Srdjan Petrovic ◽  
Zorica Vukovic ◽  
Tatjana Novakovic ◽  
Zoran Nedic ◽  
Ljiljana Rozic

Experimental adsorption isotherms were used to evaluate the specific surface area and the surface fractal dimensions of acid-activated bentonite samples modified with a heteropoly acid (HPW). The aim of the investigations was to search for correlations between the specific surface area and the geometric heterogeneity, as characterized by the surface fractal dimension and the content of added acid. In addition, mercury intrusion was employed to evaluate the porous microstructures of these materials. The results from the Frankel-Halsey-Hill method showed that, in the p/p0 region from 0.75 to 0.96, surface fractal dimension increased with increasing content of heteropoly acid. The results from mercury intrusion porosimetry (MIP) data showed the generation of mesoporous structures with important topographical modifications, indicating an increase in the roughness (fractal geometry) of the surface of the solids as a consequence of the modification with the heteropoly acid. By comparison, MIP is preferable for the characterization because of its wide effective probing range.


2011 ◽  
Vol 415-417 ◽  
pp. 1545-1552 ◽  
Author(s):  
Ming Tang ◽  
Jing Qi Li

In order to confirm the surface fractal dimension of the internal pore of complex porous materials by means of the FHH model and nitrogen adsorption method. Study the change rule on fractal characteristics of the pore of cement based materials further. The results shows that, surface area of the complex internal structure of cement based materials has the fractal characteristics observably. Testing and evaluating the fractal characteristics on surface area of the pore of cement-based materials is effective by nitrogen adsorption method. It is good for analyzing surface characteristics of pore structure further. Surface fractal dimension of pore structure and surface area have not good correlation. The characteristics and conclusion that quality fractal dimension of powder and surface area evaluating fineness of powder have not very good correlation is consistent.


2018 ◽  
Author(s):  
Emma E. George ◽  
James Mullinix ◽  
Fanwei Meng ◽  
Barbara Bailey ◽  
Clinton Edwards ◽  
...  

AbstractCorals have built reefs on the benthos for millennia, becoming an essential element in marine ecosystems. Climate change and human impact, however, are favoring the invasion of non-calcifying benthic algae and reducing coral coverage. Corals rely on energy derived from photosynthesis and heterotrophic feeding, which depends on their surface area, to defend their outer perimeter. But the relation between geometric properties of corals and the outcome of competitive coral-algal interactions is not well known. To address this, 50 coral colonies interacting with algae were sampled in the Caribbean island of Curaçao. 3D and 2D digital models of corals were reconstructed to measure their surface area, perimeter, and polyp sizes. A box counting algorithm was applied to calculate their fractal dimension. The perimeter and surface dimensions were statistically non-fractal, but differences in the mean surface fractal dimension captured relevant features in the structure of corals. The mean fractal dimension and surface area were negatively correlated with the percentage of losing perimeter and positively correlated with the percentage of winning perimeter. The combination of coral perimeter, mean surface fractal dimension, and coral species explained 19% of the variability of losing regions, while the surface area, perimeter, and perimeter-to-surface area ratio explained 27% of the variability of winning regions. Corals with surface fractal dimensions smaller than two and small perimeters displayed the highest percentage of losing perimeter, while corals with large surface areas and low perimeter-to-surface ratios displayed the largest percentage of winning perimeter. This study confirms the importance of fractal surface dimension, surface area, and perimeter of corals in coral-algal interactions. In combination with non-geometrical measurements such as microbial composition, this approach could facilitate environmental conservation and restoration efforts on coral reefs.


2009 ◽  
Vol 25 (1) ◽  
pp. 103-115
Author(s):  
J. L. Liou ◽  
J. F. Lin

AbstractThe cross sections formed by the contact asperities of two rough surfaces at an interference are islandshaped, rather than having the commonly assumed circular contour. These island-shaped contact surface contours show fractal behavior with a profile fractal dimension Ds. The surface fractal dimension for the asperity heights is defined as D and the topothesy is defined as G. In the study of Mandelbrot, the relationship between D and Ds was given as D = Ds + 1 if these two fractal dimensions are obtained before contact deformation. In the present study, D, G, and Ds are considered to be varying with the mean separation (or the interference at the rough surface) between two contact surfaces. The D-Ds relationships for the contacts at the elastic, elastoplastic, and fully plastic deformations are derived and the inceptions of the elastoplastic deformation regime and the fully plastic deformation regime are redefined using the equality of two expressions established in two different ways for the number of contact spots (N). The contact parameters, including the total contact force and the real contact area, were evaluated when the size distribution functions (n) for the three deformation regimes were available. The results indicate that both the D and Ds parameters in these deformation regimes increased with increasing the mean separation (d*). The initial plasticity index before contact deformation (ψ)0 is also a factor of importance to the predictions of the contact load (F*t) and contact area (At*) between the model of variable D and G, non-Gaussian asperity heights and circular contact area and the present model of variable D and G, non-Gaussian asperity heights and fractal contact area.


2002 ◽  
Vol 31 (1) ◽  
pp. 76-77
Author(s):  
Zheng-Hong Huang ◽  
Feiyu Kang ◽  
Jun-Bing Yang ◽  
Kai-Ming Liang ◽  
Hui Zhao ◽  
...  

2010 ◽  
Vol 97 (8) ◽  
pp. 084101 ◽  
Author(s):  
Yongping Chen ◽  
Chengbin Zhang ◽  
Mingheng Shi ◽  
George P. Peterson

Sign in / Sign up

Export Citation Format

Share Document