scholarly journals Iron loss analysis and calculation of high energy density permanent magnet machine

2021 ◽  
Vol 72 (4) ◽  
pp. 262-267
Author(s):  
Yangyang Zhao ◽  
Xu Zhang ◽  
Peihao Zhu ◽  
Qingchun Zheng

Abstract It is a research hotspot of electric propulsion system that a high energy density permanent magnet machine is used as its main power. In general, the power system of electric propulsion consists of batteries, inverters and high energy density permanent magnet machines and loads. Based on harmonic effect of PWM sine alternating current generated by inverter, iron loss model of high energy density permanent magnet machine is established under inverter power harmonic, and iron loss calculation flow chart of high energy density permanent magnet machine for electric propulsion system is shown. The influences of different stator outer diameter and rotor inner diameter on iron loss are analyzed by using the finite element method. Through the above analysis, a 30 kW high energy density permanent magnet machine was designed. Then the noload test and iron loss separation test were carried out, verifying that the machine has very low core loss.

2013 ◽  
Vol 732-733 ◽  
pp. 1212-1215
Author(s):  
Gui Wen Kang ◽  
Yu Hu ◽  
Ya Dong Li ◽  
Wen Hui Jiang

The propulsion system of ultralight electric aircraft is one of the general aviation technology development directions. It has the advantages such as light pollution, low noise, high energy utilization ratio, simple structure, easy maintenance, high reliability, less heat radiation, little operation cost and so on. Combined with the certain type of ultralight aircraft design parameters, the layout of aircraft electric propulsion, the principles and steps of the parameter matching of electric propulsion system were presented. The method of parameter matching and performance verification of electric propulsion system was put forward. The feasibility of the system is verified from the point of dynamic property. The study of parameter matching of electric propulsion system could not only provide basis for the integrated optimization for electric power system, but also evaluate the performance of the system simulation as reference.


2013 ◽  
Vol 722 ◽  
pp. 116-120 ◽  
Author(s):  
Peng Cheng ◽  
Peng Qin ◽  
Ji Hui Li

In this paper, neutral grounding mode, short-circuit failure and loss of excitation of marine integrated electric propulsion system are analyzed and summarized. Marine integrated electric propulsion system module is built in PSCAD/EMTDC. Diesel generator and its excitation module, permanent magnet synchronous propulsion motor and load module,inverter module is included in the system, Short-circuit failure and loss of excitation was added to the simulation system. The changing process of ship electric propulsion system failure is obtained.


Sign in / Sign up

Export Citation Format

Share Document