scholarly journals Thermal regime of the Dnipro Reservoirs

2021 ◽  
Vol 69 (3) ◽  
pp. 300-310
Author(s):  
Viktor Vyshnevskyi ◽  
Serhii Shevchuk

Abstract Based on the results of regular monitoring and remote sensing data the patterns of water temperature of the reservoirs cascade on the Dnipro River were identified. A characteristic feature of the thermal regime of the Dnipro Cascade has been the water temperature increase over the past decades. In the period 1977–2020 the water temperature in summer increased by 0.74 °C decade−1, and during May–October by 0.65 °C decade−1. An important factor influencing the thermal regime of the reservoirs is the influence of those ones, located upstream. Water from them is discharged from the lower layer, where the processes of heating and cooling are very slow. This has a significant influence on the water temperature of downstream reservoirs, especially on their upper part. The water temperature in this part during spring and summer seasons is lower compared to natural conditions. In autumn it is higher. The temperature of water also depends on the latitude: it rises in the reservoirs located both downstream and to the south. Another important factor influencing the water temperature is the wind, which can change the temperature in the surface layer by 5–6 °С. Water temperature also depends on the intensity of algae bloom – it is higher in the spots of a large bloom.

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 417 ◽  
Author(s):  
Mohamed Abdelkareem ◽  
Fathy Abdalla ◽  
Samar Y. Mohamed ◽  
Farouk El-Baz

At present, the Arabian Peninsula is one of the driest regions on Earth; however, this area experienced heavy rainfall in the past thousand years. During this period, catchments received substantial amounts of surface water and sustained vast networks of streams and paleolakes, which are currently inactive. The Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar (PALSAR) data reveal paleohydrologic features buried under shallow aeolian deposits in many areas of the ad-Dawasir, Sahba, Rimah/Batin, and as-Sirhan wadis. Optical remote-sensing data support that the middle of the trans-peninsula Wadi Rimah/Batin, which extends for ~1200 km from the Arabian Shield to Kuwait and covers ~200,000 km2, is dammed by linear sand dunes formed by changes in climate conditions. Integrating Landsat 8 Operational Land Imager (OLI), Geo-Eye, Shuttle Radar Topography Mission (SRTM) digital elevation model, and ALOS/PALSAR data allowed for the characterization of paleodrainage reversals and diversions shaped by structural and volcanic activity. Evidence of streams abruptly shifting from one catchment to another is preserved in Wadi ad-Dawasir along the fault trace. Volcanic activity in the past few thousand years in northern Saudi Arabia has also changed the slope of the land and reversed drainage systems. Relics of earlier drainage directions are well maintained as paleoslopes and wide upstream patterns. This study found that paleohydrologic activity in Saudi Arabia is impacted by changes in climate and by structural and volcanic activity, resulting in changes to stream direction and activity. Overall, the integration of radar and optical remote-sensing data is significant for deciphering past hydrologic activity and for predicting potential water resource areas.


2015 ◽  
Vol 6 (4) ◽  
pp. 330-347 ◽  
Author(s):  
Qingke Wen ◽  
Zengxiang Zhang ◽  
Xiaoli Zhao ◽  
Ling Yi ◽  
Xiao Wang ◽  
...  

2016 ◽  
Vol 7 (4) ◽  
pp. 708-720 ◽  
Author(s):  
Xingming Zheng ◽  
Kai Zhao ◽  
Yanling Ding ◽  
Tao Jiang ◽  
Shiyi Zhang ◽  
...  

Northeast China (NEC) has become one of China's most obvious examples of climate change because of its rising warming rate of 0.35 °C/10 years. As the indicator of climate change, the dynamic of surface soil moisture (SSM) has not been assessed yet. We investigated the spatiotemporal dynamics of SSM in NEC using a 32-year SSM product and found the following. (1) SSM displayed the characteristics of being dry in the west and wet in the east and decreased with time. (2) The seasonal difference was found for the temporal dynamics of SSM: it increased in summer and decreased in spring and autumn. (3) For all four regions studied, the temporal dynamics of SSM were similar to those of the whole of NEC, but with different rates of SSM change. Moreover, SSM in regions B and D had a lower spatial variance than the other two regions because of the stable spatial pattern of cropland. (4) The change rates for SSM were consistent with that observed for the warming rates, which indicated that SSM levels derived from remote sensing data will correlate with climate change. In summary, a wetter summer and a drier spring and autumn were observed in NEC over the past 30 years.


2014 ◽  
Vol 1051 ◽  
pp. 489-494
Author(s):  
Xiao Chen Wang ◽  
Jing Hai Zhu ◽  
Yuan Man Hu ◽  
Wei Ling Liu

Based on the remote-sensing data and ground data, this study is conducted on the ecosystem function of Yiwulvshan National Nature Scenic Area (hereinafter as “Yiwulvshan Scenic Area”) from 2000 to 2010 with the GIS (geographic information system) and RS (remote sensing) technology, so as to provide reference for better environmental protection of the scenic area. It is shown from the results that there is no obvious change of land use in Yiwulvshan Scenic Area; while the capacity for soil and water conservation is slightly improved mainly due to increase of vegetation coverage; the vegetation net primary productivity declines somewhat about 5.27% in past 10 years; and biodiversity is slightly increased. As a whole, the ecosystem function of Yiwulvshan Scenic Area basically kept stable in the past 10 years, which indicated that the existing regulations can effectively protect the ecological function of the Scenic Area.


2018 ◽  
Vol 58 (4) ◽  
pp. 448-461
Author(s):  
O. N. Solomina ◽  
I. S. Bushueva ◽  
P. D. Polumieva ◽  
E. A. Dolgova ◽  
M. D. Dokukin

On the basis of dendrochronological, lichenometric and historical data with the use of Earth remote sensing materials, the evolution of the Donguz-Orun Glacier has been reconstructed over the past centuries. In this work we used aerial photographs of 1957, 1965, 1981, 1987, satellite image of 2009, as well as descriptions, photographs, maps and plans of the glacier of the 19th and 20th centuries, data of instrumental measurements of the glacier end position in the second half of the 20th – early 21st centuries, dendrochronological dating of pine on the front part of the valley, and juniper to date coastal moraines, and the results of lichenometry studies. It has been established that the Donguz-Orun Glacier in the past had several clearly marked advances about 100, 200 and more than 350 years ago, which are expressed in relief in the form of uneven-aged coastal moraines. Despite the fact that the Donguz-Orun Glacier differs from many mountain-valley glaciers of the Caucasus primarily by its predominantly avalanche feeding and a moraine cover, almost entirely covering its surface, the main periods of its advances are consistent with the known large fluctuations of mountain glaciers during the Little Ice Age in the early 20th, early 19th, and, probably, in the middle of the 17th century. However, unlike most other Caucasian glaciers, the Donguz-Orun Glacier advanced in the 1970s–2000s. Te scale of its degradation from the end of the 19th to the beginning of the 21st century is also uncharacteristic for the Caucasus: the reduction in the length for longer than a century period is only about 100 m.


2020 ◽  
Vol 5 (2) ◽  
pp. 67-75
Author(s):  
A. V. Melnik ◽  
V. V. Melnikov ◽  
L. A. Melnik ◽  
O. V. Mashukova

In the second half of the XX century, Black Sea ecosystem has undergone significant changes: a number of storm winds and upwellings decreased, precipitation abundance increased, coastal waters salinity decreased, temperature increased; moreover, ctenophores invaded. As a result, in the late 1980s, Black Sea pelagic ecosystem abruptly got restructured. This research is based on the studies performed in 1965–1966 and 2007–2012 near Sevastopol (Western Crimea) using the remote sensing data. Analysis of satellite data over the past 20 years showed the presence of positive dynamics in surface water temperature in Sevastopol water area. In the mid-1960s, the annual bioluminescence was characterized by seasonal peaks of dinophytes luminescence. In recent years, this rhythm has changed due to ctenophores invasion. The increase in Mnemiopsis leidyi abundance leads to a decrease in bioluminescence of luminous microalgae being consumed by these ctenophores. Due to Beroe ovata invasion and reproduction, M. leidyi biomass decreased; as a result, bioluminescence increased.


Sign in / Sign up

Export Citation Format

Share Document