scholarly journals Location-Optimized Aerodynamic Rotor Design of Small Wind Turbines and Lightweight Implementation Using Additive Hybrid Material

2020 ◽  
Vol 22 (2) ◽  
pp. 437-446
Author(s):  
Daniel Lehser-Pfeffermann ◽  
Tobias Häfele ◽  
Frank U. Rückert ◽  
Jürgen Griebsch ◽  
Tobias Müller ◽  
...  

AbstractWind power plays a crucial role in supplying cities with renewable energy. Combined with short transport routes, it is essential to establish site-specific small wind turbines in the urban environment. An increasing interest in small, decentralized, vertical-axis wind turbines (VAWT) can be observed here. However, concepts with low visual and auditory effects and economic efficiencies are largely limited. The project part described in this paper enables a specially developed design software tool of rotor geometries optimized for such boundary conditions. By using fiber-reinforced structures in combination with selective laser sintering, it is theoretically possible to economically produce even the smallest quantities of these geometries for a typical service life of wind turbines. The results presented and discussed in this work can serve as a basis for a subsequent feasibility study.

2012 ◽  
Vol 36 (6) ◽  
pp. 647-665 ◽  
Author(s):  
David MacPhee ◽  
Asfaw Beyene

The following work represents the most recent advances in design and testing of vertical axis wind turbines (VAWT) rotors. VAWTs have received much attention as of late due to proposed advantages in small scale and off grid wind power generation. Thus, many recent works have surfaced involving analysis, design and optimization of VAWT rotors in order to more efficiently convert wind energy to electricity or other readily usable means. This paper is a collection of most of the recent literature works involving VAWT rotor design and testing, the majority of which published after 2005. We discuss research in the designing of various lift based rotors as well as some drag based rotors, hybrids, and various others. The recent work in this area suggests VAWT capacity could dramatically increase in the near future, and play a vital role in obtaining cleaner, more sustainable energy when global energy demand is increasing at an unprecedented rate. HIGHLIGHTS A review of various works involving rotor design and testing of both lift and drag Vertical Axis Wind Turbines (VAWTs) is presented; Benefits of vertical axis wind turbines in small scale and off grid wind power generation is summarized; Much of the recent work, published after 2005, has been directed towards analyzing, designing, and optimizing rotor shapes. The body of this recent work suggests that research on VAWT rotor design continues to flourish and could make VAWTs a viable competitor to more traditional Horizontal Axis Wind Turbines (HAWTs) worldwide.


Author(s):  
Majid Rashidi ◽  
Jaikrishnan R. Kadambi ◽  
Asuquo Ebiana ◽  
Ali Ameri ◽  
James Reeher

This work presents the results of a series of experiments conducted on three different scaled-down Helical-Savonius vertical axis wind turbines (VAWT) systems. The work was aimed at investigating how the number of blades may affect the performance of the Helical-Savonius VAWTs. The first turbine consisted of two helical blades, the second turbine had three blades, and the third turbines had four blades. The work included a design phase in which the three dimensional (3D) geometry of each of three VAWTs were developed using a 3D drawing software. The 3D models were then uploaded to a rapid-prototyping machine to fabricate the VAWTs. The projected areas of each of the VAWTs were that of a rectangle of 4″ × 6″. A test setup was designed and developed to examine the performance of the scaled-down turbines. A 1.1 KW floor fan was used to simulate wind flow in the laboratory for testing of the turbines. A flow straightener was also designed and developed in order to minimize the turbulent flow of the air at the discharge opening of the floor fan. The test results show that the 3-bladed rotor design performs better than the two and four bladed turbines. Under the same wind speed conditions the 3-bladed turbine produced 18% more power compared to the 2-bladed turbine, whereas the 3-bladed turbine produced 30% more power compared to the 4-bladed turbine.


2013 ◽  
Vol 101 ◽  
pp. 765-775 ◽  
Author(s):  
Davood Saeidi ◽  
Ahmad Sedaghat ◽  
Pourya Alamdari ◽  
Ali Akbar Alemrajabi

2016 ◽  
Vol 19 ◽  
pp. 3-9
Author(s):  
Johannes Weber ◽  
Sebastian Riedel ◽  
Julian Praß ◽  
Andreas Renz ◽  
Stefan Becker ◽  
...  

Small wind turbines are investigated as a possible solution for using wind energy at small scales in urban and suburban areas. Most turbines are suffering from a low aerodynamic performance due to turbulent and complex wind situations in cities. Therefore, increasing aerodynamic performance and reducing noise is an important factor to design small wind turbines. In order to optimize such turbines with respect to noise and efficiency it is important to understand the physical mechanisms. Measuring acoustic in urban environment it is hardly possible to obtain reproducible results, which are necessary for a comprehensively and profoundly investigation. Therefore, experimental studies have to been performed in anechoic wind tunnels. Those tunnels are mostly limited in size, which makes it quite difficult to investigate full small wind turbine models. Hence a model scale has to be used in order to measure the power and acoustic performance. For comparing the model scale results with original turbines, the same flow conditions around the airfoils are necessary. Due to the smaller size of the model scale the relative velocities of the blades are less, which can result in a laminar boundary layer. In order to force transition from laminar to turbulent, boundary layer trips can be used. The focus of this study is to examine and quantify the effect of boundary layer tripping on the aeroacoustics in case of small vertical axis wind turbines.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2286
Author(s):  
Yutaka Hara ◽  
Yoshifumi Jodai ◽  
Tomoyuki Okinaga ◽  
Masaru Furukawa

To investigate the optimum layouts of small vertical-axis wind turbines, a two-dimensional analysis of dynamic fluid body interaction is performed via computational fluid dynamics for a rotor pair in various configurations. The rotational speed of each turbine rotor (diameter: D = 50 mm) varies based on the equation of motion. First, the dependence of rotor performance on the gap distance (gap) between two rotors is investigated. For parallel layouts, counter-down (CD) layouts with blades moving downwind in the gap region yield a higher mean power than counter-up (CU) layouts with blades moving upwind in the gap region. CD layouts with gap/D = 0.5–1.0 yield a maximum average power that is 23% higher than that of an isolated single rotor. Assuming isotropic bidirectional wind speed, co-rotating (CO) layouts with the same rotational direction are superior to the combination of CD and CU layouts regardless of the gap distance. For tandem layouts, the inverse-rotation (IR) configuration shows an earlier wake recovery than the CO configuration. For 16-wind-direction layouts, both the IR and CO configurations indicate similar power distribution at gap/D = 2.0. For the first time, this study demonstrates the phase synchronization of two rotors via numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document