scholarly journals 2D and 3D numerical simulation of fatigue crack growth path and life predictions of a linear elastic

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abdullateef H. Bashiri

Abstract This paper describes implementation of the finite element method (FEM) to investigate crack growth problems in linear elastic fracture mechanics and the correlation of results with experimental and numerical data. The approach involved using two different software to compute stress intensity factors (SIFs), the crack propagation trajectory, and fatigue life estimation in two and three dimensions. According to the software, crack modeling might be run in various ways. The first is a developed source code program written in the Visual Fortran language, while the second is the widely used ANSYS Mechanical APDL 19.2 software. The fatigue crack propagation trajectory and the corresponding SIFs were predicted using these two software programs. The crack direction was investigated using the maximum circumferential stress theory, and the finite element (FE) analysis for fatigue crack growth was done for both software based on Paris's law. The predicted results in both software demonstrated the influence of holes on the crack growth trajectory and all associated stresses and strains. The study's findings agree with other experimental and numerical crack propagation studies presented in the literature that reveal similar crack propagation trajectory observations.

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Yahya Ali Fageehi

This paper presents computational modeling of a crack growth path under mixed-mode loadings in linear elastic materials and investigates the influence of a hole on both fatigue crack propagation and fatigue life when subjected to constant amplitude loading conditions. Though the crack propagation is inevitable, the simulation specified the crack propagation path such that the critical structure domain was not exceeded. ANSYS Mechanical APDL 19.2 was introduced with the aid of a new feature in ANSYS: Smart Crack growth technology. It predicts the propagation direction and subsequent fatigue life for structural components using the extended finite element method (XFEM). The Paris law model was used to evaluate the mixed-mode fatigue life for both a modified four-point bending beam and a cracked plate with three holes under the linear elastic fracture mechanics (LEFM) assumption. Precise estimates of the stress intensity factors (SIFs), the trajectory of crack growth, and the fatigue life by an incremental crack propagation analysis were recorded. The findings of this analysis are confirmed in published works in terms of crack propagation trajectories under mixed-mode loading conditions.


2019 ◽  
pp. 147592171986572
Author(s):  
Chang Qi ◽  
Yang Weixi ◽  
Liu Jun ◽  
Gao Heming ◽  
Meng Yao

Fatigue crack propagation is one of the main problems in structural health monitoring. For the safety and operability of the metal structure, it is necessary to monitor the fatigue crack growth process of the structure in real time. In order to more accurately monitor the expansion of fatigue cracks, two kinds of sensors are used in this article: strain gauges and piezoelectric transducers. A model-based inverse finite element model algorithm is proposed to perform pattern recognition of fatigue crack length, and the fatigue crack monitoring experiment is carried out to verify the algorithm. The strain spectra of the specimen under cyclic load in the simulation and experimental crack propagation are obtained, respectively. The active lamb wave technique is also used to monitor the crack propagation. The relationship between the crack length and the lamb wave characteristic parameter is established. In order to improve the recognition accuracy of the crack propagation mode, the random forest and inverse finite element model algorithms are used to identify the crack length, and the Dempster–Shafer evidence theory is used as data fusion to integrate the conclusion of the two algorithms to make a more accountable and correct judge of the crack length. An experiment has been conducted to demonstrate the effectiveness of the method.


2014 ◽  
Vol 891-892 ◽  
pp. 777-783 ◽  
Author(s):  
Sarmediran Silitonga ◽  
Johan Maljaars ◽  
Frans Soetens ◽  
Hubertus H. Snijder

In this work, a numerical method is pursued based on a cohesive zone model (CZM). The method is aimed at simulating fatigue crack growth as well as crack growth retardation due to an overload. In this cohesive zone model, the degradation of the material strength is represented by a variation of the cohesive traction with respect to separation of the cohesive surfaces. Simulation of crack propagation under cyclic loads is implemented by introducing a damage mechanism into the cohesive zone. Crack propagation is represented in the process zone (cohesive zone in front of crack-tip) by deterioration of the cohesive strength due to damage development in the cohesive element. Damage accumulation during loading is based on the displacements in the cohesive zone. A finite element model of a compact tension (CT) specimen subjected to a constant amplitude loading with an overload is developed. The cohesive elements are placed in front of the crack-tip along a pre-defined crack path. The simulation is performed in the finite element code Abaqus. The cohesive elements behavior is described using the user element subroutine UEL. The new damage evolution function used in this work provides a good agreement between simulation results and experimental data.


Author(s):  
Adrian Loghin ◽  
Shakhrukh Ismonov

Abstract Assessing the crack propagation life of components is a critical aspect in evaluating the overall structural integrity of a mechanical structure that poses a risk of failure. Engineers often rely on industry standards and fatigue crack growth tools such as NASGRO [1] and AFGROW [2] to perform life assessment for different structural components. A good understanding of material damage tolerant capabilities, and the component’s loading mission during service conditions are required along with the availability of generic fracture mechanics models implemented in the lifing tools. Three-dimensional (3D) linear elastic fracture mechanics (LEFM) finite element modeling (FEM) is also a viable alternative to simulate crack propagation in a component. This method allows capturing detailed geometry of the component and representative loading conditions which can be crucial to accurately simulate the three dimensionality of the propagating crack shape and further determine the associated loading cycles. In comparison to a generic model, the disadvantage of the 3D FEM is the extended runtime. One feasible way to benefit from 3D modeling is to employ it to understand the crack front evolution and growth path for the representative loading condition. Mode I stress intensity factors (KI) along the predetermined crack growth path can be generated for use in fatigue crack growth tools such as NASGRO. In the current study, such a 3D FEM lifing process is presented using a classical bolt-nut assembly, components that are commonly used in engineering design. First, KI solutions for a fixed crack aspect ratio a/c = 1 are benchmarked against a similar solution available in NASGRO. Next, a predefined set of crack shapes and sizes are simulated using 3D FEA. A machine learning model Gaussian Process (GP) was trained to predict the KI solutions of the 3D model, which in turn was used in the crack propagation simulation to accelerate the life assessment process. Verification of the implemented procedure is done by correlating the crack growth curves predicted from GP to the results obtained directly from 3D FE crack propagation method.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1316
Author(s):  
Abdullateef H. Bashiri ◽  
Abdulnaser M. Alshoaibi

The existence of a hole near a growing fatigue crack can cause the crack trajectory to deviate. Unless the hole is too close to the crack, the crack is arrested at the edge of the hole and does not progress further. The purpose of this paper was to predict the crack propagation and lifetime of two-dimension geometries for linear elastic materials in mixed-mode loading using a finite element source code program written in Visual Fortran language. The finite element mesh is generated using the advancing front method. The onset criterion of crack propagation was based on the equivalent stress intensity factor which provides the most important parameter that must be accurately estimated for the mixed-mode loading condition. The maximum circumferential stress theory was used as a direction criterion. The modified compact tension (MCTS) was studied to demonstrate the influence of the hole’s presence on the direction of crack growth and fatigue life for different configurations. The Paris’ law model has been employed to evaluate the mixed-mode fatigue life for MCTS in different configurations under the linear elastic fracture mechanics (LEFMs) assumption. The framework involves a progressive crack extension study of stress intensity factors (SIFs), crack growth direction, and fatigue life estimation. The results show that the fatigue growth was attracted to the hole either changes its direction to reach the hole or floats by the hole and grows as the hole is missed. The results of the study agree with several crack propagation experiments in the literature revealing similar crack propagation trajectory observations.


Author(s):  
S. Bhattacharya ◽  
G. Pamnani ◽  
S. Sanyal ◽  
K. Sharma

Piezoelectric materials due to their electromechanical coupling characteristics are being widely used in actuators, sensor, transducers, etc. Considering wide application it is essential to accurately predict their fatigue and fracture under applied loading conditions. The present study deals with analysis of fatigue crack growth in piezoelectric material using the extended finite element method (XFEM). A pre-cracked rectangular plate with crack at its edge and center impermeable crack-face boundary conditions is considered for simulation. Fatigue crack growth is simulated using extended finite element method under plane strain condition and mechanical, combined (mechanical and electrical) cyclic loading. Stress intensity factors for mechanical and combined (mechanical and electrical cyclic loadings) have been evaluated by interaction integral approach using the asymptotic crack tip fields. Crack propagation criteria have been applied to predict propagation and finally the failure.


2012 ◽  
Vol 544 ◽  
pp. 145-150
Author(s):  
Zhen Yu Ding ◽  
Xiao Gui Wang ◽  
Zeng Liang Gao

Crack closure concept is often used to explain the crack propagation behavior in cracked components. The effective stress intensity factor range is considered as a driving force of fatigue crack growth based on the traditional crack closure concept. The crack closure process and the plastic deformation near the crack tip were discussed in this paper. The standard compact tension specimen with the plane-stress condition was used to study the crack closure. A dynamic crack propagation method was proposed to simulate the effect of previous fatigue crack growth on the successive crack growth behavior. To obtain the accurately numerical results of stress and strain components, the Jiang and Sehitoglu cyclic plasticity model was implemented into ABAQUS as UMAT. With the detailed stress and strain response taken from the finite element (FE) simulation, the whole process of crack closure was described by the load curve. The load corresponding to maximum crack closure length is firstly proposed to describe the effect of fatigue damage. According to the results of FE simulation, the cyclic plasticity of the material near the crack tip persists during the crack closure period and should not be ignored.


2021 ◽  
Vol 11 (16) ◽  
pp. 7480
Author(s):  
Yahya Ali Fageehi

Problems in fracture mechanics are difficult when the appropriate analysis is unspecified, which is very common in most real-life situations. Finite element modeling is thus demonstrated to be an essential technique to overcome these problems. There are currently various software tools available for modeling fracture mechanics problems, but they are usually difficult to use, and obtaining accurate results is not an obvious task. This paper illustrates some procedures in two finite element programs to solve problems in two- and three-dimensional linear-elastic fracture mechanics, and an educational proposal is made to use this software for a better understanding of fracture mechanics. Crack modeling was done in a variety of ways depending on the software. The first is the well-known ANSYS, which is usually utilized in industry, and the second was a freely distributed code, called FRANC2D/L, from Cornell University. These software applications were used to predict the fatigue crack growth path as well as the associated stress intensity factors. The predicted results demonstrate that the fatigue crack is turned towards the hole. The fatigue crack growth paths are influenced by the varying positions and sizes of single holes, while two symmetrically distributed holes have no effect on the fatigue crack growth direction. The findings of the study agree with other experimental crack propagation studies presented in the literature that reveal similar crack propagation trajectory observations.


2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


Sign in / Sign up

Export Citation Format

Share Document