scholarly journals Production of Hydrogen from Coke Oven Gas in JSW Group

2020 ◽  
Vol 3 (1) ◽  
pp. 9-20
Author(s):  
Tomasz Szeszko

AbstractThe publication analyses the possibility of separating hydrogen from coke oven gas for further use in the transport sector in the FCEV segment (fuel cell electric vehicles). The construction of the separation installation using the PSA (pressure swing adsorption) method guaranteeing high purity of hydrogen was assumed, according to the requirements of ISO 14678-2:2012 and SAE J-2719 standards. The PSA technology is widely used in industrial gas separation processes, however, due to the composition of coal gas, which apart from hydrogen and methane consists of impurities in the form of hydrocarbons, sulphur compounds, chlorine, etc., it needs to be adapted to the needs of separation of hydrogen from coke oven gas. The study shows the total possible hydrogen production potential and then, in agreement with the JSW Group’s Coking Plants, limits were set for hydrogen production in PSA technology at Przyjaźń, Jadwiga and Radlin Coking Plants, without the negative impact of the separation installation on technological processes associated with coke oven battery firing, operation of existing power units, gas compression systems and taking into account securing the needs of external customers for coke oven gas. Additionally, in order to determine the Polish market demand for high-purity hydrogen, an analysis was carried out which indicates that in 2030 the share of FCEVs will be 2%, so the demand for hydrogen in this segment would be negligible compared to the supply of hydrogen produced in a large-scale installation. Due to the need to build such a market and adapt the parameters of the installation to the variable parameters of coke oven gas, the pilot scale of the installation and the target location of the installation at the Przyjaźń Coking Plant were indicated as the most optimal.

2022 ◽  
Vol 184 ◽  
pp. 592-603
Author(s):  
Baoxu Zhang ◽  
Yumin Chen ◽  
Bing Zhang ◽  
Ruifeng Peng ◽  
Qiancheng Lu ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 2225
Author(s):  
Ralf Peters ◽  
Janos Lucian Breuer ◽  
Maximilian Decker ◽  
Thomas Grube ◽  
Martin Robinius ◽  
...  

Achieving the CO2 reduction targets for 2050 requires extensive measures being undertaken in all sectors. In contrast to energy generation, the transport sector has not yet been able to achieve a substantive reduction in CO2 emissions. Measures for the ever more pressing reduction in CO2 emissions from transportation include the increased use of electric vehicles powered by batteries or fuel cells. The use of fuel cells requires the production of hydrogen and the establishment of a corresponding hydrogen production system and associated infrastructure. Synthetic fuels made using carbon dioxide and sustainably-produced hydrogen can be used in the existing infrastructure and will reach the extant vehicle fleet in the medium term. All three options require a major expansion of the generation capacities for renewable electricity. Moreover, various options for road freight transport with light duty vehicles (LDVs) and heavy duty vehicles (HDVs) are analyzed and compared. In addition to efficiency throughout the entire value chain, well-to-wheel efficiency and also other aspects play an important role in this comparison. These include: (a) the possibility of large-scale energy storage in the sense of so-called ‘sector coupling’, which is offered only by hydrogen and synthetic energy sources; (b) the use of the existing fueling station infrastructure and the applicability of the new technology on the existing fleet; (c) fulfilling the power and range requirements of the long-distance road transport.


2021 ◽  
Vol 13 (14) ◽  
pp. 7804
Author(s):  
Christoph Falter ◽  
Andreas Sizmann

Hydrogen produced from renewable energy has the potential to decarbonize parts of the transport sector and many other industries. For a sustainable replacement of fossil energy carriers, both the environmental and economic performance of its production are important. Here, the solar thermochemical hydrogen pathway is characterized with a techno-economic and life-cycle analysis. Assuming a further increase of conversion efficiency and a reduction of investment costs, it is found that hydrogen can be produced in the United States of America at costs of 2.1–3.2 EUR/kg (2.4–3.6 USD/kg) at specific greenhouse gas emissions of 1.4 kg CO2-eq/kg. A geographical potential analysis shows that a maximum of 8.4 × 1011 kg per year can be produced, which corresponds to about twelve times the current global and about 80 times the current US hydrogen production. The best locations are found in the Southwest of the US, which have a high solar irradiation and short distances to the sea, which is beneficial for access to desalinated water. Unlike for petrochemical products, the transport of hydrogen could potentially present an obstacle in terms of cost and emissions under unfavorable circumstances. Given a large-scale deployment, low-cost transport seems, however, feasible.


2009 ◽  
Vol 23 (1) ◽  
pp. 414-421 ◽  
Author(s):  
Hongwei Cheng ◽  
Yuwen Zhang ◽  
Xionggang Lu ◽  
Weizhong Ding ◽  
Qian Li

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shuheng Zhong ◽  
Kangdi Yang ◽  
Yongji Wang

Coal is the cornerstone of China's energy. However, with the proposed goal of carbon peak and carbon-neutral in China, coal enterprises are in urgent need of exploring the path of transformation. Coal to hydrogen is an important way to achieve sustainable development of the coal industry. In this paper, four hydrogen production technologies, including coal gasification, coke oven gas, electrolytic water, and solar energy, are studied. A comprehensive evaluation model based on GRA-TOPSIS was constructed. The research shows that the coke oven gas is the most suitable hydrogen production technology for the transformation and development of coal enterprises. The evaluation model of hydrogen production technology in the transformation and development of coal enterprises constructed in this paper has a certain guiding effect on the technology selection of coal enterprises in the development of the hydrogen industry.


2016 ◽  
Vol 126 (3) ◽  
pp. 1621-1631 ◽  
Author(s):  
Huaqing Xie ◽  
Qingbo Yu ◽  
Zongliang Zuo ◽  
Jianrong Zhang ◽  
Zhicheng Han ◽  
...  

2012 ◽  
Vol 1387 ◽  
Author(s):  
Nitin Kalra ◽  
Kalathur Santhanam ◽  
David Olney

ABSTRACTThe electrochemical decomposition of water is an attractive method, however, the performance of the electrodes and efficiencies are of great concern in its large scale production. In this context, we wish to report here the superior performance of Ni-multiwalled carbon nanotube composite as cathode in the decomposition of water. The current voltage curves recorded with this electrode in different media showed a significant electrocatalysis in the reduction of hydrogen ion; the background electrolysis is shifted in the anodic direction. The nanocomposite composition has been found to be crucial in the efficient production of hydrogen. A coulombic efficiency of about 68% has been obtained at this electrode with a hydrogen production rate of 130L/m2 d. This electrode is more efficient than the 316L stainless steel (composition in percentage: C 0.019, Cr 17.3, Mo 2.04, Ni 11.3, Mn 1.04, N 0.041, Fe bulk) cathode that produces 10 ml/h at an area of 20 cm2 (5L/m2.h) (2). The results obtained with different electrolytes, performance variation with electrode composition, and current densities will be presented. The trials carried out using solar panel instead of DC power source showed similar hydrogen production rates and efficiencies.


Sign in / Sign up

Export Citation Format

Share Document