scholarly journals Design and fabrication of 125I seeds for brachytherapy using capillary-based microfluidic technique

Nukleonika ◽  
2021 ◽  
Vol 66 (2) ◽  
pp. 55-60
Author(s):  
Yuan Wang ◽  
Miao Zhang ◽  
Tong Song ◽  
Zhenqi Chang

Abstract A new kind of 125I seeds with a core-shell structure were synthesized by an easy assembling–disassembling coaxial capillaries microfluidic device. The dose distribution of a 125I brachytherapy source fabricated by arranging six 125I seeds collinearly within a cylindrical titanium capsule was simulated by modelling the source in a water phantom using Monte Carlo N-Particle Transport code. The influence of the motion and the core size of the 125I seeds on the dose distribution was also studied in this work.

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 867
Author(s):  
Lin Guo ◽  
Zhu Mao ◽  
Sila Jin ◽  
Lin Zhu ◽  
Junqi Zhao ◽  
...  

Surface-enhanced Raman scattering (SERS) is a powerful tool in charge transfer (CT) process research. By analyzing the relative intensity of the characteristic bands in the bridging molecules, one can obtain detailed information about the CT between two materials. Herein, we synthesized a series of Au nanorods (NRs) with different length-to-diameter ratios (L/Ds) and used these Au NRs to prepare a series of core–shell structures with the same Cu2O thicknesses to form Au NR–4-mercaptobenzoic acid (MBA)@Cu2O core–shell structures. Surface plasmon resonance (SPR) absorption bands were adjusted by tuning the L/Ds of Au NR cores in these assemblies. SERS spectra of the core-shell structure were obtained under 633 and 785 nm laser excitations, and on the basis of the differences in the relative band strengths of these SERS spectra detected with the as-synthesized assemblies, we calculated the CT degree of the core–shell structure. We explored whether the Cu2O conduction band and valence band position and the SPR absorption band position together affect the CT process in the core–shell structure. In this work, we found that the specific surface area of the Au NRs could influence the CT process in Au NR–MBA@Cu2O core–shell structures, which has rarely been discussed before.


2021 ◽  
Author(s):  
Yu Qiao ◽  
Na Lv ◽  
Dong Li ◽  
Hongji Li ◽  
Xiangxin Xue ◽  
...  

Metastable Cu2O is an attractive material for the architecture design of integrated nanomaterials. In this context, Cu2O was used as the sacrificial agent to form the core-shell structure of Cu2O@HKUST-1...


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91463-91467 ◽  
Author(s):  
Peng Zhang ◽  
Shixun Bai ◽  
Shilan Chen ◽  
Dandan Li ◽  
Zhenfu Jia ◽  
...  

Well defined core–shell microspheres were prepared by surface-initiated atom transfer radical polymerization with pre-crosslinked polyacrylamide as the core and non-crosslinked polyacrylamide as the shell.


2016 ◽  
Vol 4 (35) ◽  
pp. 5831-5841 ◽  
Author(s):  
Min Liu ◽  
Lei Wu ◽  
Xi Zhu ◽  
Wei Shan ◽  
Lian Li ◽  
...  

The stability of the core–shell structure plays an important role in the nanoparticles ability to overcome both the mucus and epithelium absorption barrier.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750056 ◽  
Author(s):  
Huiping Shao ◽  
Jiangcong Qi ◽  
Tao Lin ◽  
Yuling Zhou ◽  
Fucheng Yu

The core–shell structure composite magnetic nanoparticles (NPs), Fe3O4@chitosan@nimodipine (Fe3O4@CS@NMDP), were successfully synthesized by a chemical cross-linking method in this paper. NMDP is widely used for cardiovascular and cerebrovascular disease prevention and treatment, while CS is of biocompatibility. The composite particles were characterized by an X-ray diffractometer (XRD), a Fourier transform infrared spectroscopy (FT-IR), a transmission electron microscopy (TEM), a vibrating sample magnetometers (VSM) and a high performance liquid chromatography (HPLC). The results show that the size of the core–shell structure composite particles is ranging from 12[Formula: see text]nm to 20[Formula: see text]nm and the coating thickness of NMDP is about 2[Formula: see text]nm. The saturation magnetization of core–shell composite NPs is 46.7[Formula: see text]emu/g, which indicates a good potential application for treating cancer by magnetic target delivery. The release percentage of the NMDP can reach 57.6% in a short time of 20[Formula: see text]min in the PBS, and to 100% in a time of 60[Formula: see text]min, which indicates the availability of Fe3O4@CS@NMDP composite NPs for targeting delivery treatment.


2010 ◽  
Vol 46 (10) ◽  
pp. 1189-1197 ◽  
Author(s):  
B. I. Podlovchenko ◽  
T. D. Gladysheva ◽  
A. Yu. Filatov ◽  
L. V. Yashina

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Su-Ryeon Yun ◽  
Gyeong-Ok Kim ◽  
Chan Woo Lee ◽  
Nam-Ju Jo ◽  
Yongku Kang ◽  
...  

Polyaniline (Pani) and polypyrrole (Ppy) half hollow spheres with different shell thicknesses were successfully synthesized by three steps process using polystyrene (PS) as the core. The PS core was synthesized by emulsion polymerization. Aniline and pyrrole monomers were polymerized on the surface of the PS core. The shells of Pani and Ppy were fabricated by adding different amounts of aniline and pyrrole monomers. PS cores were dissolved and removed from the core shell structure by solvent extraction. The thicknesses of the Pani and Ppy half hollow spheres were observed by FE-SEM and FE-TEM. The chemical structures of the Pani and Ppy half hollow spheres were characterized by FT-IR spectroscopy and UV-Vis spectroscopy. The shell thicknesses of the Pani half hollow spheres were 30.2, 38.0, 42.2, 48.2, and 52.4 nm, while the shell thicknesses of the Ppy half hollow spheres were 16.0, 22.0, 27.0, and 34.0 nm. The shell thicknesses of Pani and Ppy half hollow spheres linearly increased as the amount of the monomer increased. Therefore, the shell thickness of the Pani and Ppy half hollow spheres can be controlled in these ranges.


2014 ◽  
Vol 43 (24) ◽  
pp. 9283-9295 ◽  
Author(s):  
Xueqiang Qi ◽  
M. Rosa Axet ◽  
Karine Philippot ◽  
Pierre Lecante ◽  
Philippe Serp

The two-step synthesis of small ruthenium–platinum nanoparticles leads to the formation of a core–shell structure. The catalytic results provide supplementary evidence of the core–shell structure.


Sign in / Sign up

Export Citation Format

Share Document