scholarly journals Control Strategy of Parallel Systems with Efficiency Optimisation in Switched Reluctance Generators

2021 ◽  
Vol 6 (1) ◽  
pp. 61-74
Author(s):  
Xiaoshu Zan ◽  
Hang Lin ◽  
Guanqun Xu ◽  
Tiejun Zhao ◽  
Yi Gong

Abstract To solve motor heating and life shortening of parallel switched reluctance generator (SRG) induced by uneven output currents due to different external characteristics, we generally adopt current sharing control (CSC) to make each parallel generator undertake large load currents on average to improve the reliability of parallel power generation system. However, the method usually causes additional loss of power because it does not consider the efficiency characteristics of each parallel generator. Therefore, with the efficiency expression for the parallel system of SRG established and analysed, the control strategy based on differential evolution (DE) algorithm is proposed as a mechanism by which to enhance generating capacity and reliability of multi-machine power generation from the perspective of efficiency optimisation. We re-adjust the reference current of each parallel generator to transform the working point of each generator and implement the efficiency optimisation of parallel system. The performance of the proposed control method is evaluated in detail by the simulation and experiment, and comparison with traditional CSC is carried out as well.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3951 ◽  
Author(s):  
Zhang ◽  
Zhuang ◽  
Liu ◽  
Wang ◽  
Guo

Due to the existence of line impedances and low-bandwidth communication, the traditional peer-to-peer control method based on droop control has difficult meeting the requirements of current sharing and voltage stability in islanded DC microgrids at the same time. In this paper, a novel current-sharing control strategy based on injected small ac voltage with low frequency and low amplitude is proposed for multiple paralleled DC–DC converters. The small ac voltage is superimposed onto the output voltage of each converter. Then, the reactive circulating power is generated and used to regulate the output DC voltage of each converter. Under the droop characteristic between the injected frequency and output DC current, a feedback mechanism is generated to realize the accurate current sharing. On this basis, a reactive power-voltage limiter link and virtual negative impedance are added. Under the interaction of the two links, the bus voltage drop caused by line impedances can be almost completely eliminated. This method does not need any communication or to change the hardware structure. The controller design process is presented in detail along with a system stability analysis. Finally, the feasibility and effectiveness of the proposed control strategy are validated by the results obtained from simulations and experiments.



2021 ◽  
Author(s):  
Pengwei Chen ◽  
Lei Li ◽  
Jiale Liu ◽  
Yunqiu Wang ◽  
Quansen Ding ◽  
...  


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1554 ◽  
Author(s):  
Man Zhang ◽  
Imen Bahri ◽  
Xavier Mininger ◽  
Cristina Vlad ◽  
Hongqin Xie ◽  
...  

Due to their inherent advantages such as low cost, robustness and wide speed range, switched reluctance machines (SRMs) have attracted great attention in electrical vehicles. However, the vibration and noise problems of SRMs limit their application in the automotive industry because of the negative impact on driver and passengers’ comfort. In this paper, a new control method is proposed to improve the vibratory and acoustic behavior of SRMs. Two additional control blocks —direct force control (DFC) and reference current adapter (RCA)—are introduced to the conventional control method (average torque control (ATC)) of SRM. DFC is adopted to control the radial force in the teeth of the stator, since the dynamic of the radial force has a large impact on the vibratory performance. RCA is proposed to handle the trade-off between the DFC and ATC. It produces an auto-tuning current reference to update the reference current automatically depending on the control requirement. The effectiveness of the proposed control strategy is verified by experimental results under both steady and transient condition. The results show that the proposed method improves the acoustic performance of the SRM and maintains the dynamic response of it, which proves the potential of the proposed control strategy.



2021 ◽  
Author(s):  
Shengwei Gao ◽  
Hao Wang ◽  
Yifeng Wang ◽  
Zhongjie Wang ◽  
Bo Chen


2020 ◽  
Vol 10 (20) ◽  
pp. 7021
Author(s):  
Yan Li ◽  
Peng Xiang ◽  
Yandong Chen

This article proposes a topology of the secondary reconfigurable inverter and the corresponding fault-tolerant control strategy. When the secondary reconfigurable inverter is operating normally, its topology structure is the TPSS circuit. When the power semiconductor devices in the inverter are faulty, the inverter circuit needs to be reconfigured. After removing the faulty power semiconductor devices, the remaining power semiconductor devices and the DC side powers are reconstructed as the TPFS structure to keep the system running normally. This article also proposes a switch-pulse-resetting algorithm. This paper adopts the control strategy connecting the constant-voltage, constant-frequency control method with the switch pulse resetting algorithm. It need not change the control algorithm when the proposed reconfigurable inverter is transformed from the normal running state into the faulty running state. The inverter dependability is greatly improved. Finally, the feasibility and effectiveness of the proposed second reconfigurable inverter topology and control strategy are verified by simulation and experiment.



2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Xiangxiang Meng ◽  
Haisheng Yu ◽  
Herong Wu ◽  
Tao Xu

A novel method of disturbance observer-based integral backstepping control is proposed for the two-tank liquid level system with external disturbances. The problem of external disturbances can be settled in this paper. Firstly, the mathematical model of the two-tank liquid level system is established based on fluid mechanics and principle of mass conservation. Secondly, an integral backstepping control strategy is designed in order to ensure liquid level tracking performance by making the tracking errors converge to zero in finite time. Thirdly, a disturbance observer is designed for the two-tank liquid level system with external disturbances. Finally, the validity of the proposed method is verified by simulation and experiment. By doing so, the simulation and experimental results prove that the scheme of disturbance observer-based integral backstepping control strategy can suppress external disturbances more effective than the disturbance observer-based sliding mode control method and has better dynamic and steady performance of the two-tank liquid level system.



2015 ◽  
Vol 62 (11) ◽  
pp. 6647-6657 ◽  
Author(s):  
Mohsen Hamzeh ◽  
Amin Ghazanfari ◽  
Yasser Abdel-Rady I. Mohamed ◽  
Yaser Karimi


2013 ◽  
Vol 339 ◽  
pp. 614-620
Author(s):  
Fei Yu

High-power electromagnetic transmitter power supply is an important part of deep geophysical exploration equipment, especially in complex environments, where how to control the high accuracy and stable output of the power supply as well as the redundancy safety of the system become the key issue in its designing. A triple-loop control including inner current loop, outer voltage loop and load current forward feedback and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. System simulation and field geological exploration experiments demonstrate the effectiveness of the control method which could ensure both the systems excellent stability and the outputs accuracy.





Sign in / Sign up

Export Citation Format

Share Document